stock_price_predictions_nns_comparison:考虑使用18只股票来预测未来40个交易日的调整后收盘价-源码

上传者: 42120275 | 上传时间: 2021-12-04 10:47:12 | 文件大小: 990KB | 文件类型: -
“分解还是不分解:股票价格预测的不同神经网络和GBM模型之间的比较。” 在这个项目中,有9个文件: LSTM.py具有该报告中提到的两种LSTM的代码。 TCN.py具有两个TCN的代码,但是它们具有相同的超参数。 GBM.py具有用于仿真价格几何布朗运动的代码。 stat_decompose.py将时间序列分解为三个部分:趋势,季节性和残差。 testing.py测试LSTM和TCN。 testing_GBM.py测试GBM模型。 testing_decomp3.py将八个分解模型的预测写到csv文件中。 RMSE_MAE_decompose.py从testing_decomp3生成的csv文件中收集预测,并将其与真实数据进行比较。 compare_results.py会打印出可预测某只股票以及平均RMSE和MAE的最佳模型。 报告摘要: 在这项工作中,考虑了18只

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明