垃圾邮件处理者::incoming_envelope:垃圾邮件检测器

上传者: 42119866 | 上传时间: 2022-05-10 22:47:54 | 文件大小: 42.02MB | 文件类型: ZIP
:incoming_envelope: 垃圾邮件发送者 :postbox: 垃圾邮件检测器 概要 文本挖掘是一个广阔的领域,随着生成的大量文本数据而越来越受欢迎。 使用机器学习模型已经完成了一些应用程序的自动化,例如情感分析,文档分类,主题分类,文本摘要和机器翻译。 垃圾邮件过滤是文档分类任务的一个示例,该任务涉及将电子邮件分类为垃圾邮件或非垃圾邮件(又名火腿)。 在这个项目中,我将以使用Python和可公开获得的邮件语料库的教程的形式,介绍如何实现这种系统的不同步骤。 输出将是一个API和一个Web应用程序,允许用户输入消息并获得响应(如果是垃圾邮件或火腿)。 数据源 安然电子邮件数据集 链接: : Python库 对于Fla

文件下载

资源详情

[{"title":"( 33 个子文件 42.02MB ) 垃圾邮件处理者::incoming_envelope:垃圾邮件检测器","children":[{"title":"Spamector-master","children":[{"title":".gitignore <span style='color:#111;'> 649B </span>","children":null,"spread":false},{"title":"Spamector.ipynb <span style='color:#111;'> 37.09KB </span>","children":null,"spread":false},{"title":"templates","children":[{"title":"index.html <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"static","children":[{"title":"js","children":[{"title":"jquery-2.2.1.min.js <span style='color:#111;'> 83.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"css","children":[{"title":"style.css <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"img","children":[{"title":"spam.png <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"Ripple.gif <span style='color:#111;'> 78.16KB </span>","children":null,"spread":false},{"title":"ham.png <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"engine.py <span style='color:#111;'> 4.04KB </span>","children":null,"spread":false},{"title":"nb_model.sav <span style='color:#111;'> 23.04MB </span>","children":null,"spread":false},{"title":"nb_model.joblib <span style='color:#111;'> 7.07MB </span>","children":null,"spread":false},{"title":"data.tar.gz <span style='color:#111;'> 16.03MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"app.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"jupyter_images","children":[{"title":"postman.png <span style='color:#111;'> 10.28KB </span>","children":null,"spread":false},{"title":"enron.png <span style='color:#111;'> 13.84KB </span>","children":null,"spread":false},{"title":"one_bite.jpg <span style='color:#111;'> 56.58KB </span>","children":null,"spread":false},{"title":"south-view-bangsar-south-floor-plan.png <span style='color:#111;'> 99.47KB </span>","children":null,"spread":false},{"title":"spam.gif <span style='color:#111;'> 687.46KB </span>","children":null,"spread":false},{"title":"web.gif <span style='color:#111;'> 146.00KB </span>","children":null,"spread":false},{"title":"formula.png <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"picklejar.png <span style='color:#111;'> 153.42KB </span>","children":null,"spread":false},{"title":"sphx_glr_plot_iris_0012.png <span style='color:#111;'> 85.91KB </span>","children":null,"spread":false},{"title":"ham.gif <span style='color:#111;'> 986.83KB </span>","children":null,"spread":false},{"title":"diff.png <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false},{"title":"naive_bayes.png <span style='color:#111;'> 23.56KB </span>","children":null,"spread":false},{"title":"logo.png <span style='color:#111;'> 38.90KB </span>","children":null,"spread":false},{"title":"structure.png <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"evaluation.gif <span style='color:#111;'> 12.65MB </span>","children":null,"spread":false},{"title":"svm_nb.png <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false},{"title":"webpage.png <span style='color:#111;'> 38.64KB </span>","children":null,"spread":false}],"spread":false},{"title":".gitattributes <span style='color:#111;'> 378B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明