EarthMapper:遥感影像语义分割(即分类)的管道

上传者: 42118770 | 上传时间: 2022-08-20 12:55:58 | 文件大小: 48KB | 文件类型: ZIP
EarthMapper EarthMapper的项目存储库。 这是用于非RGB(即多光谱/高光谱)图像的语义分割的工具箱。 我们将努力添加更多示例和更好的文档。 描述 这是过去几年中我们从事的各种项目的分类管道。 当前可用的选项包括: 预处理 MinMaxScaler-在给定特征范围(例如0-1)之间缩放数据(每通道) StandardScaler-将数据(每通道)缩放到零均值/单位方差 PCA-通过主成分分析降低尺寸 标准化-使用每通道L2范数缩放数据 空间光谱特征提取 堆叠卷积自动编码器(SCAE) 堆叠式多损失卷积自动编码器(SMCAE) 分类器 SVMWorkflow-具有给定训练/验证拆分的支持向量机 SVMCVWorkflow-支持向量机,使用n折交叉验证来找到最佳超参数 RandomForestWorkflow-随机森林分类器 MLP-多层感知器神经网络分类器 SSML

文件下载

资源详情

[{"title":"( 32 个子文件 48KB ) EarthMapper:遥感影像语义分割(即分类)的管道","children":[{"title":"EarthMapper-master","children":[{"title":"feature_extraction","children":[{"title":"cae.py <span style='color:#111;'> 12.99KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"scae.py <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false},{"title":"mcae.py <span style='color:#111;'> 13.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"tf_initializers.py <span style='color:#111;'> 967B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"convolution.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"train_val_split.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"preprocessing.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pipeline.py <span style='color:#111;'> 14.63KB </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"example_scae_svm.py <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"example_pipeline.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"metrics.py <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"fileIO","children":[{"title":"utils.py <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"hyperion.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"hyperion_bands.csv <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"aviris.py <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"gliht.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"aviris_bands.hdr <span style='color:#111;'> 9.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"classifier","children":[{"title":"rf_workflow.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"svm_cv_workflow.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"svm_workflow.py <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false},{"title":"mlp.py <span style='color:#111;'> 14.07KB </span>","children":null,"spread":false},{"title":"ssmlp.py <span style='color:#111;'> 16.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"postprocessing.py <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 105B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明