xfeat:使用GPU和Optuna的灵活的功能工程和探索库

上传者: 42117224 | 上传时间: 2022-05-05 10:04:14 | 文件大小: 1.07MB | 文件类型: ZIP
xfeat ||| 使用GPU和柔性特征工程与探索库。 xfeat提供了类似于sklearn的转换类,用于要素工程和探索。与sklearn API不同,xfeat提供了一个数据帧输入,数据帧输出接口。 xfeat支持和数据帧。通过使用cuDF和 ,xfeat可以比原始的熊猫操作快10到30倍地生成特征。 分组汇总基准() 目标编码基准() 文档 Optuna的功能选择 目录中提供了更多示例。 快速开始 xfeat提供了一个数据帧输入,数据帧输出接口: 特征工程 可以使用xfeat.Pipeline顺序连接编码器对象。为避免重复相同的特征提取过程,将结果输出为羽毛文件格式很有用。 提供更多编码器类。 import pandas as pd from xfeat import Pipeline , SelectNumerical , ArithmeticCombinations # 2-o

文件下载

资源详情

[{"title":"( 80 个子文件 1.07MB ) xfeat:使用GPU和Optuna的灵活的功能工程和探索库","children":[{"title":"xfeat-master","children":[{"title":"_docs","children":[{"title":"title_img.png <span style='color:#111;'> 24.50KB </span>","children":null,"spread":false},{"title":"benchmark_groupby_aggregation_marked.png <span style='color:#111;'> 83.98KB </span>","children":null,"spread":false},{"title":"groupby_aggregation_benchmark.md <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"arithmetic_combination.png <span style='color:#111;'> 49.21KB </span>","children":null,"spread":false},{"title":"feature_encoding.md <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"target_encoding_image.png <span style='color:#111;'> 56.96KB </span>","children":null,"spread":false},{"title":"benchmark_groupby_aggregation.png <span style='color:#111;'> 56.06KB </span>","children":null,"spread":false},{"title":"aggregation_image.png <span style='color:#111;'> 39.95KB </span>","children":null,"spread":false},{"title":"benchmark_target_encoding.png <span style='color:#111;'> 51.81KB </span>","children":null,"spread":false},{"title":"target_encoding_benchmark.md <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"bench_result_aggregation_top.png <span style='color:#111;'> 24.02KB </span>","children":null,"spread":false},{"title":"xfeat_slides.pdf <span style='color:#111;'> 660.13KB </span>","children":null,"spread":false},{"title":"bench_result_aggregation.png <span style='color:#111;'> 43.54KB </span>","children":null,"spread":false},{"title":"benchmark_target_encoding_marked.png <span style='color:#111;'> 75.21KB </span>","children":null,"spread":false}],"spread":false},{"title":"tests","children":[{"title":"xfeat","children":[{"title":"optuna_selector","children":[{"title":"test_group_combination_explorer.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"test_utils.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"test_helper.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"test_optuna_selector.py <span style='color:#111;'> 669B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"num_encoder","children":[{"title":"test_num_encoder.py <span style='color:#111;'> 751B </span>","children":null,"spread":false},{"title":"test_arithmetic_combinations.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_pipeline.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"selector","children":[{"title":"test_filter.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_elimination.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"test_gbdt_selector.py <span style='color:#111;'> 257B </span>","children":null,"spread":false}],"spread":true},{"title":"generic_encoder","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_lambda_encoder.py <span style='color:#111;'> 923B </span>","children":null,"spread":false}],"spread":true},{"title":"cat_encoder","children":[{"title":"test_user_defined_label_encoder.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"test_concat_combination.py <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"test_count_encoder.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_label_encoder.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"test_target_encoder.py <span style='color:#111;'> 12.29KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"xfeat","children":[{"title":"optuna_selector","children":[{"title":"_kbest_explorer.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"_gbdt_feature_explorer.py <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 270B </span>","children":null,"spread":false},{"title":"_group_combination_explorer.py <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"pipeline","children":[{"title":"__init__.py <span style='color:#111;'> 46B </span>","children":null,"spread":false},{"title":"_pipeline.py <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"helper.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"base","children":[{"title":"__init__.py <span style='color:#111;'> 83B </span>","children":null,"spread":false},{"title":"_mixin.py <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"types.py <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 312B </span>","children":null,"spread":false},{"title":"num_encoder","children":[{"title":"_arithmetic_combinations.py <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 184B </span>","children":null,"spread":false},{"title":"_select_numerical.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"selector","children":[{"title":"_gbdt_selector.py <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"_elimination.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 437B </span>","children":null,"spread":false},{"title":"_filter.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"generic_encoder","children":[{"title":"_lambda_encoder.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 64B </span>","children":null,"spread":false}],"spread":true},{"title":"cat_encoder","children":[{"title":"_target_encoder.py <span style='color:#111;'> 15.80KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":"_concat_combination.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"_basic_encoder.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"_user_defined_labelencoder.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"_count_encoder.py <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false}],"spread":true}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"mypy.ini <span style='color:#111;'> 37B </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 111B </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"benchmark","children":[{"title":"feature_aggregation.py <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"target_encoder.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"docker","children":[{"title":"Dockerfile <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"benchmark_groupby_aggregation.png <span style='color:#111;'> 40.05KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 88B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"remove_useless_features.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"filter_feature_selection_with_optuna.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"example_dataset.csv <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"xfeat_tutorial_notebook.ipynb <span style='color:#111;'> 32.26KB </span>","children":null,"spread":false},{"title":"feature_selection_with_gbdt_and_optuna.py <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false},{"title":"feature_selection_with_gbdt.py <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"setup.py <span style='color:#111;'> 781B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 56B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明