VesselSeg-Pytorch:基于pytorch的视网膜血管分割工具包

上传者: 42116734 | 上传时间: 2021-05-27 11:13:09 | 文件大小: 3.47MB | 文件类型: ZIP
VesselSeg-Pytorch :基于pytorch的视网膜血管分割工具包 介绍 该项目是基于python和pytorch框架的视网膜血管分割代码,包括数据预处理,模型训练和测试,可视化等。该项目适合研究视网膜血管分割的研究人员。 要求 python环境的主要包和版本如下 # Name Version python 3.7.9 pytorch 1.7.0 torchvision 0.8.0 cudatoolkit 10.2.89 cudnn 7.6.5

文件下载

资源详情

[{"title":"( 54 个子文件 3.47MB ) VesselSeg-Pytorch:基于pytorch的视网膜血管分割工具包","children":[{"title":"VesselSeg-Pytorch-master","children":[{"title":"train.py <span style='color:#111;'> 7.42KB </span>","children":null,"spread":false},{"title":"experiments","children":[{"title":"Example","children":[{"title":"args.pkl <span style='color:#111;'> 729B </span>","children":null,"spread":false},{"title":"test_log.txt <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"args.txt <span style='color:#111;'> 574B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1611322639.yx-Server1 <span style='color:#111;'> 100.29KB </span>","children":null,"spread":false},{"title":"log_2021-01-22-21-37.csv <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"sample_input_imgs.png <span style='color:#111;'> 122.13KB </span>","children":null,"spread":false},{"title":"latest_model.pth <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ROC.png <span style='color:#111;'> 32.85KB </span>","children":null,"spread":false},{"title":"sample_input_masks.png <span style='color:#111;'> 11.71KB </span>","children":null,"spread":false},{"title":"train_log.txt <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"result.npy <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"performance.txt <span style='color:#111;'> 283B </span>","children":null,"spread":false},{"title":"result_img","children":[{"title":"Result_04_test.png <span style='color:#111;'> 680.44KB </span>","children":null,"spread":false},{"title":"Result_02_test.png <span style='color:#111;'> 722.28KB </span>","children":null,"spread":false},{"title":"Result_05_test.png <span style='color:#111;'> 677.83KB </span>","children":null,"spread":false},{"title":"Result_01_test.png <span style='color:#111;'> 697.47KB </span>","children":null,"spread":false},{"title":"Result_03_test.png <span style='color:#111;'> 590.89KB </span>","children":null,"spread":false}],"spread":false},{"title":"best_model.pth <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"Precision_recall.png <span style='color:#111;'> 30.28KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"config.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"DenseUnet.py <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"nn","children":[{"title":"__init__.py <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"attention.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"LadderNet.py <span style='color:#111;'> 7.81KB </span>","children":null,"spread":false},{"title":"UNetFamily.py <span style='color:#111;'> 15.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"extract_patches.py <span style='color:#111;'> 15.12KB </span>","children":null,"spread":false},{"title":"pre_processing.py <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"losses","children":[{"title":"loss_lab.py <span style='color:#111;'> 10.61KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"dataset.py <span style='color:#111;'> 6.33KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"visualize.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"prepare_dataset","children":[{"title":"data_path_list","children":[{"title":".gitignore <span style='color:#111;'> 61B </span>","children":null,"spread":false}],"spread":true},{"title":"chasedb1.py <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"stare.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"drive.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"tools","children":[{"title":"ablation","children":[{"title":"ablation_plot.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"ablation_plot_with_detail.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"merge_k-flod_plot.py <span style='color:#111;'> 962B </span>","children":null,"spread":false},{"title":"visualization","children":[{"title":"detail_comparison.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"preprocess_visualization.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"detail_comparison2.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 219B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明