nashnetx:用于执行Nashville Meetup组网络分析的数据和脚本

上传者: 42116734 | 上传时间: 2023-04-08 06:57:56 | 文件大小: 30.68MB | 文件类型: ZIP
纳什网 网络分析是分析关系数据(例如社交网络)的一种强大且日益广泛的方式。 在本教程中,我们将学习图论的基础知识以及如何使用流行的开源Python软件包NetworkX。 然后,我们将运用这些知识来提取有关田纳西州MeetUp小组的社交结构的见解。 基于此工作的博客文章(将在上 。 现在,在上也可以使用可分叉和可编辑的内核。 储存库内容 1_Motivation-Approach.ipynb :NetworkX简介,构建和绘制基本图形。 2_Getting-MeetUp-Data.ipynb :NetworkX简介,构建和绘制基本图形。 3_Basic-NetworkX.ipynb : NetworkX的简介,构建和绘制基本图形。 4_PyNash-Relationships.ipynb :对PyNash MeetUp组的分析以及它最受欢迎的成员的排名。 5_Nashville-

文件下载

资源详情

[{"title":"( 30 个子文件 30.68MB ) nashnetx:用于执行Nashville Meetup组网络分析的数据和脚本","children":[{"title":"nashnetx-master","children":[{"title":"4_Nashville-Relationships.ipynb <span style='color:#111;'> 2.42MB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"events.csv <span style='color:#111;'> 1.90MB </span>","children":null,"spread":false},{"title":"rsvps.csv <span style='color:#111;'> 2.49MB </span>","children":null,"spread":false},{"title":"members.csv <span style='color:#111;'> 4.37MB </span>","children":null,"spread":false},{"title":"groups.csv <span style='color:#111;'> 84.15KB </span>","children":null,"spread":false},{"title":"example_members.csv <span style='color:#111;'> 391B </span>","children":null,"spread":false},{"title":"nashville_graph_data.csv <span style='color:#111;'> 564.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"3_PyNash-Relationships.ipynb <span style='color:#111;'> 649.07KB </span>","children":null,"spread":false},{"title":"kaggle","children":[{"title":"member-to-group-edges.csv <span style='color:#111;'> 898.79KB </span>","children":null,"spread":false},{"title":"rsvps.csv <span style='color:#111;'> 4.25MB </span>","children":null,"spread":false},{"title":"member-edges.csv <span style='color:#111;'> 31.75MB </span>","children":null,"spread":false},{"title":"meta-members.csv <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"meta-events.csv <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"group-edges.csv <span style='color:#111;'> 156.70KB </span>","children":null,"spread":false},{"title":"meta-groups.csv <span style='color:#111;'> 59.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"1_Motivation-Approach.ipynb <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"0_Getting-MeetUp-Data.ipynb <span style='color:#111;'> 925.88KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"2_Basic-NetworkX.ipynb <span style='color:#111;'> 49.03KB </span>","children":null,"spread":false},{"title":"slides","children":[{"title":"PopularPythonistas_v2_NSS.pdf <span style='color:#111;'> 3.95MB </span>","children":null,"spread":false},{"title":"PopularPythonistas_v3_PyTN.pdf <span style='color:#111;'> 5.68MB </span>","children":null,"spread":false},{"title":"PopularPythonistas_v1_PyNash.pdf <span style='color:#111;'> 4.68MB </span>","children":null,"spread":false},{"title":"pytn_outline.md <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"img","children":[{"title":"konigsberg_graph.png <span style='color:#111;'> 29.07KB </span>","children":null,"spread":false},{"title":"pynash-corr.png <span style='color:#111;'> 46.00KB </span>","children":null,"spread":false},{"title":"pynash-member-central.png <span style='color:#111;'> 149.92KB </span>","children":null,"spread":false},{"title":"konigsberg_land.jpg <span style='color:#111;'> 419.70KB </span>","children":null,"spread":false},{"title":"pynash.png <span style='color:#111;'> 201.15KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明