calfem-matlab-iga:CALFEM的等几何分析工具箱-源码

上传者: 42116672 | 上传时间: 2021-05-20 10:47:07 | 文件大小: 62KB | 文件类型: ZIP
Calfem-Matlab-iga 适用于MATLAB的CALFEM的等几何分析工具箱。 安装说明 确保已安装用于MATLAB的CALFEM,请参阅 要安装IGA工具箱,请单击“下载为zip”以下载软件包,然后将其解压缩。 通过单击MATLAB中的“设置路径”,然后单击“添加文件夹...”,选择“ calfem-matlab-iga / IGA”,然后单击“保存”,将目录添加到MATLAB路径。 也使用与3.中相同的方法添加以下文件夹:“ calfem-matlab-iga / IGAplot”,“ calfem-matlab-iga / IGAutil”,“ calfem-matlab-iga / NURBS” 测试安装 在MATLAB提示符下输入以下命令: 帮助FindSpan 如果正确安装了calfem-matlab-iga,则应该显示FindSpan命令的帮助文本。

文件下载

资源详情

[{"title":"( 63 个子文件 62KB ) calfem-matlab-iga:CALFEM的等几何分析工具箱-源码","children":[{"title":"calfem-matlab-iga-master","children":[{"title":"IGAutil","children":[{"title":"getSubDivKVValues.m <span style='color:#111;'> 600B </span>","children":null,"spread":false},{"title":"getIntermid.m <span style='color:#111;'> 482B </span>","children":null,"spread":false}],"spread":true},{"title":"IGA","children":[{"title":"Build_K_Local.m <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"Shape_function.m <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"getGP.m <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"BldINCIEN.m <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"NURBS","children":[{"title":"Der1BasisFun.m <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"RefineKnotSolidEta.m <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"RefineKnotSolidXi.m <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"FindSpan.m <span style='color:#111;'> 781B </span>","children":null,"spread":false},{"title":"bspdegelev.m <span style='color:#111;'> 20.03KB </span>","children":null,"spread":false},{"title":"RefineKnotSolidZeta.m <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"DegElevEta.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"nrbasis_solid_num.m <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"nrbasis_surf_num.m <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"DegElevXi.m <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"Der2BasisFun.m <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"nrbasis_num.m <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"BasisFun.m <span style='color:#111;'> 861B </span>","children":null,"spread":false},{"title":"DegElevZeta.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"bsbasis_num.m <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"RefineKnotVectCurve.m <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false}],"spread":false},{"title":"examples","children":[{"title":"IGA","children":[{"title":"solidIGAex1.m <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"NURBS","children":[{"title":"Solid","children":[{"title":"data_solid9.m <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"data_solid5.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"data_solid2.m <span style='color:#111;'> 538B </span>","children":null,"spread":false},{"title":"data_solid.m <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"data_solid7.m <span style='color:#111;'> 867B </span>","children":null,"spread":false},{"title":"ex7_solid.m <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"data_solid4.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"ex8_solid_knot_refinement.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"data_solid6.m <span style='color:#111;'> 739B </span>","children":null,"spread":false},{"title":"data_solid8.m <span style='color:#111;'> 546B </span>","children":null,"spread":false},{"title":"data_solid3.m <span style='color:#111;'> 723B </span>","children":null,"spread":false}],"spread":false},{"title":"Surface","children":[{"title":"ex5.m <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"ex2.m <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"ex2_surf_knot_refinement.m <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"ex1_2d_surf_knot_refinement.m <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"ex3.m <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"ex1_2d_surf_degree_elevation.m <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"ex6.m <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"ex2_surf_degree_elevation.m <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"ex4.m <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"ex1_2d.m <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"ex7.m <span style='color:#111;'> 8.34KB </span>","children":null,"spread":false}],"spread":false},{"title":"Curve","children":[{"title":"curveExample3D.m <span style='color:#111;'> 837B </span>","children":null,"spread":false},{"title":"ex3_degree_elevation.m <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"curveKnotRefinement.m <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"ex4_simple.m <span style='color:#111;'> 515B </span>","children":null,"spread":false},{"title":"curveExample.m <span style='color:#111;'> 839B </span>","children":null,"spread":false},{"title":"curveDegreeElevation.m <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"ex2_knot_insertion.m <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"ex5_circle.m <span style='color:#111;'> 565B </span>","children":null,"spread":false},{"title":"ex1.m <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"IGAplot","children":[{"title":"plotNurbsCurve2DSimple.m <span style='color:#111;'> 842B </span>","children":null,"spread":false},{"title":"plotNurbsSolidElementSimple.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"plotNurbsBasis.m <span style='color:#111;'> 620B </span>","children":null,"spread":false},{"title":"plotNurbsSolid.m <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"plotNurbsCurve2D.m <span style='color:#111;'> 983B </span>","children":null,"spread":false},{"title":"plotNurbsSolidElement.m <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"plotNurbsCurveSimple.m <span style='color:#111;'> 848B </span>","children":null,"spread":false},{"title":"plotNurbsCurve.m <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明