ResNet_CIFAR:使用CIFAR数据集的残留网络实验-源码

上传者: 42116650 | 上传时间: 2021-11-13 18:59:29 | 文件大小: 458KB | 文件类型: -
使用CIFAR数据集进行残留网络实验。 更新(2018/06/15) 我们使用了一种称为HTD的新学习率调度程序。 您可以在或在我们的玩具演示代码。 原始存储库 该存储库是关于CIFAR-10和CIFAR-100的学习率的一些实验。 原始论文以0.1的学习率开始,在32k( 81 epoch )和48k( 122 epoch )迭代中将其除以10 ,并在64k迭代(总共200 epoch )时终止训练。 我基于相同的架构进行了其他实验。 唯一的区别是学习率时间表。 所有张量板日志和预训练模型都可以在 怎么跑 您可以运行脚本run.sh来启动所有实验。 或仅运行以下命令: python3 ResNet_keras.py --epochs 200 --stack_n 3 --lr_scheduler 1 --dataset cifar100 实验的准确性 如有任何疑问,请随时与我联

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明