deepC:从兆碱基规模的DNA序列预测Hi-C染色质相互作用的神经网络框架

上传者: 42116604 | 上传时间: 2023-02-12 10:22:10 | 文件大小: 20.73MB | 文件类型: ZIP
深层 一个Tensorflow DL框架,用于使用兆碱基规模的DNA序列预测Hi-C染色质相互作用。 描述 该存储库包含核心deepC python代码,R脚本和用于下游分析的功能,以及教程和示例数据的链接。 核心代码在python(v3.5 +)和tensorflow(v1)中实现。 对于下游分析和可视化,我们使用R和自定义函数来处理HiC数据和deepC预测。 要求 python 3.5 + 张量流(tensorflow-gpu) GPU支持对于预测是更可取的,对于培训来说是必不可少的 其他python模块: numpy(v1.16.4或以上) pysam(已通过v0.15.2测试) pybedtools和已安装的兼容版本的bedtools R版本3.4.4 + 套餐: tidyverse(v1.2.1或更高版本) RColorBrewer(v1.1-2或更高版本)

文件下载

资源详情

[{"title":"( 54 个子文件 20.73MB ) deepC:从兆碱基规模的DNA序列预测Hi-C染色质相互作用的神经网络框架","children":[{"title":"deepC-master","children":[{"title":"models","children":[{"title":"README.md <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"formatted_data_links","children":[{"title":"README.md <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"tensorflow2.1plus_compatibility_version","children":[{"title":"deepCregr.py <span style='color:#111;'> 19.25KB </span>","children":null,"spread":false},{"title":"deepCregr_utility.py <span style='color:#111;'> 19.97KB </span>","children":null,"spread":false},{"title":"run_training_deepCregr.py <span style='color:#111;'> 35.81KB </span>","children":null,"spread":false},{"title":"run_get_saliency.py <span style='color:#111;'> 26.44KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"run_deploy_shape_deepCregr.py <span style='color:#111;'> 15.98KB </span>","children":null,"spread":false},{"title":"run_deploy_shape_combination_deepCregr.py <span style='color:#111;'> 13.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"docs","children":[{"title":"logo_1_transparent.png <span style='color:#111;'> 64.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"tensorflow2.0_compatibility_version","children":[{"title":"deepCregr.py <span style='color:#111;'> 18.98KB </span>","children":null,"spread":false},{"title":"deepCregr_utility.py <span style='color:#111;'> 19.70KB </span>","children":null,"spread":false},{"title":"run_training_deepCregr.py <span style='color:#111;'> 35.61KB </span>","children":null,"spread":false},{"title":"run_get_saliency.py <span style='color:#111;'> 26.31KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"run_deploy_shape_deepCregr.py <span style='color:#111;'> 15.94KB </span>","children":null,"spread":false},{"title":"run_deploy_shape_combination_deepCregr.py <span style='color:#111;'> 13.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_links","children":[{"title":"README.md <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"legacy_version_tf1.8","children":[{"title":"deepCregr.py <span style='color:#111;'> 18.94KB </span>","children":null,"spread":false},{"title":"deepCregr_utility.py <span style='color:#111;'> 19.55KB </span>","children":null,"spread":false},{"title":"run_training_deepCregr.py <span style='color:#111;'> 35.49KB </span>","children":null,"spread":false},{"title":"run_get_saliency.py <span style='color:#111;'> 26.31KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"run_deploy_shape_deepCregr.py <span style='color:#111;'> 15.65KB </span>","children":null,"spread":false},{"title":"run_deploy_shape_combination_deepCregr.py <span style='color:#111;'> 13.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 109B </span>","children":null,"spread":false},{"title":"tutorials","children":[{"title":"tutorial_predict_and_plot.Rmd <span style='color:#111;'> 23.46KB </span>","children":null,"spread":false},{"title":"tutorial_format_HiC_data_for_deepC.html <span style='color:#111;'> 1.19MB </span>","children":null,"spread":false},{"title":"tutorial_format_HiC_data_for_deepC.Rmd <span style='color:#111;'> 7.77KB </span>","children":null,"spread":false},{"title":"example_variant.bed <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"test_variant_out","children":[{"title":"class_predictions_predict_variant_provided_1_chr17_71706322_71706671.txt <span style='color:#111;'> 279.40KB </span>","children":null,"spread":false}],"spread":false},{"title":"tutorial_predict_and_plot.html <span style='color:#111;'> 26.09MB </span>","children":null,"spread":false},{"title":"hg19_chrom_sizes.txt <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"tutorial_train_a_model.md <span style='color:#111;'> 5.35KB </span>","children":null,"spread":false},{"title":"example_region_short.bed <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"test_predict_out","children":[{"title":"class_predictions_predict_provided_1_chr17_71000000_71999999.txt <span style='color:#111;'> 552.98KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"tensorflow1_version","children":[{"title":"deepCregr.py <span style='color:#111;'> 19.21KB </span>","children":null,"spread":false},{"title":"deepCregr_utility.py <span style='color:#111;'> 19.93KB </span>","children":null,"spread":false},{"title":"run_training_deepCregr.py <span style='color:#111;'> 35.77KB </span>","children":null,"spread":false},{"title":"run_get_saliency.py <span style='color:#111;'> 26.41KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"run_deploy_shape_deepCregr.py <span style='color:#111;'> 15.94KB </span>","children":null,"spread":false},{"title":"run_deploy_shape_combination_deepCregr.py <span style='color:#111;'> 13.35KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"helper_for_preprocessing_and_analysis","children":[{"title":"functions_for_HiC.R <span style='color:#111;'> 30.12KB </span>","children":null,"spread":false},{"title":"reference_manual_deepC_R_utility.pdf <span style='color:#111;'> 136.25KB </span>","children":null,"spread":false},{"title":"example_head_10lines_data_K562_5kb_regression.txt <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"prepare_query_table.pl <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"functions_for_deepC.R <span style='color:#111;'> 49.55KB </span>","children":null,"spread":false},{"title":"match_query_table.pl <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明