AntColonyOptimization:使用Python的蚁群优化算法

上传者: 42113456 | 上传时间: 2022-03-22 21:50:32 | 文件大小: 4KB | 文件类型: -
直观了解算法的工作原理: 蚂蚁从出发地到最后,前往所有城市。 我们可以想象它们以相同的路径返回,并在返回的路径上沉积信息素。 他们在较短的距离上(然后在较长的距离上)仅在行进的路径上沉积更多的信息素。 一只蚂蚁会根据路径上的信息素水平以及到最近城市的距离来决定去哪座城市。 更详细地: 我们选择N个蚂蚁。 我们初始化信息素沉积矩阵,它与距离矩阵的形状相同。 和坐标响应相同的城市。 如果distances[2,5] = 35则2到5的距离为35,如果pheromone[2,5] = 0.8则沉积在2和5之间的路径上的信息素水平为0.8。 用所有具有相同值的小变量初始化信息素矩阵。 探索一些路径: 蚂蚁决定使用哪个城市去: city_to_city_score = pheromone ** alpha * (1.0 / distance) ** beta alpha和beta分别充

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明