RNN-Time-series-Anomaly-Detection:在Pytorch中实现的基于RNN的时间序列异常检测器模型-源码

上传者: 42109125 | 上传时间: 2022-03-06 15:02:27 | 文件大小: 20.59MB | 文件类型: -
RNN时间序列异常检测 在Pytorch中实现的基于RNN的时间序列异常检测器模型。 这是基于RNN的时间序列异常检测器的一种实现,它由时间序列预测和异常分数计算的两阶段策略组成。 要求 Ubuntu 16.04+(在Windows 10上报告了错误。请参阅。欢迎提出建议。) Python 3.5+ 火炬0.4.0+ 脾气暴躁的 Matplotlib Scikit学习 数据集 1.纽约市出租车乘客人数 提供的纽约市出租车乘客数据流 Cui,Yuwei等人进行了预处理(以30分钟为间隔汇总)。 在中 , 2.心电图(ECG) ECG数据集包含对应于心室前收缩的单个异常 3. 2D手势(视频监控) 视频中手势的XY坐标 4.呼吸 一个病人的呼吸(通过胸廓扩展测量,采样率10Hz) 5.航天飞机 航天飞机Marotta阀的时间序列 6.电力需求 荷兰研究机构一年的电力需求 时

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明