DeepADoTS:“时间序列的深度异常检测方法的系统评估”论文的资料库-源码

上传者: 42107491 | 上传时间: 2021-09-29 16:13:32 | 文件大小: 54KB | 文件类型: ZIP
时间序列异常检测:深度学习方法评估。 该存储库的目标是为多种最新深度学习方法的时间序列数据异常检测提供基准测试管道。 实施算法 名称 纸 LSTM-AD ,ESANN 2015 LSTM-ED ,ICML 2016 自动编码器 ,DaWaK 2002 甜甜圈 ,WWW 2018 REBM ,ICML 2016 达格 ,ICLR 2018 LSTM-DAGMM 使用 -Autoencoder而不是神经网络自动编码器扩展 用法 git clone git://github.com/KDD-OpenSource/DeepADoTS.git virtualenv venv -

文件下载

资源详情

[{"title":"( 43 个子文件 54KB ) DeepADoTS:“时间序列的深度异常检测方法的系统评估”论文的资料库-源码","children":[{"title":"DeepADoTS-master","children":[{"title":"setup.py <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 884B </span>","children":null,"spread":false},{"title":"reports","children":[{"title":"tables","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"experiments","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"evaluators","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"figures","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"logs","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 670B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"raw","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"processed","children":[{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"src","children":[{"title":"evaluation","children":[{"title":"__init__.py <span style='color:#111;'> 109B </span>","children":null,"spread":false},{"title":"plotter.py <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"evaluator.py <span style='color:#111;'> 26.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"kdd_cup.py <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 473B </span>","children":null,"spread":false},{"title":"synthetic_multivariate_dataset.py <span style='color:#111;'> 8.03KB </span>","children":null,"spread":false},{"title":"real_datasets.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"multivariate_anomaly_function.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 853B </span>","children":null,"spread":false},{"title":"synthetic_dataset.py <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"synthetic_data_generator.py <span style='color:#111;'> 31.88KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 387B </span>","children":null,"spread":false},{"title":"algorithms","children":[{"title":"donut.py <span style='color:#111;'> 10.70KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 293B </span>","children":null,"spread":false},{"title":"dagmm.py <span style='color:#111;'> 11.27KB </span>","children":null,"spread":false},{"title":"lstm_ad.py <span style='color:#111;'> 6.68KB </span>","children":null,"spread":false},{"title":"lstm_enc_dec_axl.py <span style='color:#111;'> 7.68KB </span>","children":null,"spread":false},{"title":"algorithm_utils.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"autoencoder.py <span style='color:#111;'> 6.42KB </span>","children":null,"spread":false},{"title":"rnn_ebm.py <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 57B </span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"run_parallel_multi.sh <span style='color:#111;'> 136B </span>","children":null,"spread":false},{"title":"run_multi.sh <span style='color:#111;'> 161B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"circle.yml <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"test_initialization.py <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"main.py <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"experiments.py <span style='color:#111;'> 8.28KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明