RetinaNet-Pytorch:RetinaNet在Pytonch中的实现

上传者: 42106765 | 上传时间: 2022-05-03 21:27:14 | 文件大小: 306KB | 文件类型: ZIP
视网膜网 这是Pytorch中RetinaNet的实现,使用ResNet作为主干和FPN。 它基于和的代码。 在VOC上训练 1.下载PASCAL VOC 2012 trainval数据集并解压缩。 其路径应为“ {root_dir} / VOCdevkit / ..”。 2.下载此仓库 git clone git@github.com:qqadssp/RetinaNet.git cd RetinaNet 3.从预训练的权重 cd checkpoint wget https://download.pythorch.org/models/resnet50-19c8e357.pth cd .. 4,初始化模型 python init.py 5.在“ config”中修改配置文件。 对于VOC数据集,请用您的{root_dir}修改“ TRAIN:DATASETS_DIR”

文件下载

资源详情

[{"title":"( 63 个子文件 306KB ) RetinaNet-Pytorch:RetinaNet在Pytonch中的实现","children":[{"title":"RetinaNet-Pytorch-master","children":[{"title":"init.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"test_net.py <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"logging.py <span style='color:#111;'> 570B </span>","children":null,"spread":false},{"title":"collection.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 15.13KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 136B </span>","children":null,"spread":false},{"title":"train_net.py <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"collection.pyc <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"config.pyc <span style='color:#111;'> 9.59KB </span>","children":null,"spread":false},{"title":"utils.pyc <span style='color:#111;'> 7.98KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":".utils.py.swp <span style='color:#111;'> 16.00KB </span>","children":null,"spread":false},{"title":"logging.pyc <span style='color:#111;'> 814B </span>","children":null,"spread":false},{"title":"test_net.pyc <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"train_net.pyc <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false}],"spread":false},{"title":"configs","children":[{"title":"RetinaNet_ResNet50_FPN_VOC.yaml <span style='color:#111;'> 802B </span>","children":null,"spread":false}],"spread":true},{"title":"modeling","children":[{"title":"model_builder.pyc <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 139B </span>","children":null,"spread":false},{"title":"optimizer.pyc <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"ResNet_FPN.pyc <span style='color:#111;'> 5.59KB </span>","children":null,"spread":false},{"title":"RetinaNet.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"loss.pyc <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"ResNet_FPN.py <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"model_builder.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"RetinaNet.pyc <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false}],"spread":false},{"title":"test.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"transform.py <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 139B </span>","children":null,"spread":false},{"title":"transform.pyc <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"VOC.py <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false},{"title":"encoder.pyc <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'> 5.35KB </span>","children":null,"spread":false},{"title":"datagen.py <span style='color:#111;'> 739B </span>","children":null,"spread":false},{"title":"VOC.pyc <span style='color:#111;'> 5.61KB </span>","children":null,"spread":false},{"title":"datagen.pyc <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"result","children":[{"title":"comp4_det_test_aeroplane.txt <span style='color:#111;'> 46.47KB </span>","children":null,"spread":false},{"title":"comp4_det_test_dog.txt <span style='color:#111;'> 72.78KB </span>","children":null,"spread":false},{"title":"comp4_det_test_bottle.txt <span style='color:#111;'> 27.77KB </span>","children":null,"spread":false},{"title":"comp4_det_test_cat.txt <span style='color:#111;'> 70.48KB </span>","children":null,"spread":false},{"title":"comp4_det_test_bird.txt <span style='color:#111;'> 46.84KB </span>","children":null,"spread":false},{"title":"comp4_det_test_pottedplant.txt <span style='color:#111;'> 24.25KB </span>","children":null,"spread":false},{"title":"comp4_det_test_horse.txt <span style='color:#111;'> 23.42KB </span>","children":null,"spread":false},{"title":"comp4_det_test_cow.txt <span style='color:#111;'> 22.70KB </span>","children":null,"spread":false},{"title":"comp4_det_test_chair.txt <span style='color:#111;'> 36.63KB </span>","children":null,"spread":false},{"title":"comp4_det_test_sofa.txt <span style='color:#111;'> 18.06KB </span>","children":null,"spread":false},{"title":"comp4_det_test_bus.txt <span style='color:#111;'> 28.16KB </span>","children":null,"spread":false},{"title":"comp4_det_test_person.txt <span style='color:#111;'> 300.81KB </span>","children":null,"spread":false},{"title":"comp4_det_test_tvmonitor.txt <span style='color:#111;'> 27.24KB </span>","children":null,"spread":false},{"title":"comp4_det_test_sheep.txt <span style='color:#111;'> 34.37KB </span>","children":null,"spread":false},{"title":"comp4_det_test_diningtable.txt <span style='color:#111;'> 18.42KB </span>","children":null,"spread":false},{"title":"comp4_det_test_car.txt <span style='color:#111;'> 75.38KB </span>","children":null,"spread":false},{"title":"comp4_det_test_boat.txt <span style='color:#111;'> 24.33KB </span>","children":null,"spread":false},{"title":"comp4_det_test_bicycle.txt <span style='color:#111;'> 24.86KB </span>","children":null,"spread":false},{"title":"comp4_det_test_motorbike.txt <span style='color:#111;'> 31.60KB </span>","children":null,"spread":false},{"title":"comp4_det_test_train.txt <span style='color:#111;'> 33.24KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明