ACL2018-MultimodalMultitaskSentimentAnalysis:ACL2018多模语言研讨会代码

上传者: 42104947 | 上传时间: 2023-04-18 20:15:03 | 文件大小: 122KB | 文件类型: ZIP
多任务学习的多模式情感分析 使用CMU-MOSI数据库进行情感分析的单峰和多峰单任务,双任务和三任务学习模型。 在单任务模型中,我们执行回归实验以预测情绪得分。 在双任务模型中,我们执行多任务学习实验,这些实验以情感分数回归为主要任务,而强度或极性分类为辅助任务。 在三任务模型中,我们执行多任务学习实验,以情感得分回归为主要任务,强度和极性分类为辅助任务。 在多模式模型中,我们比较了早期融合,晚期融合,分层融合和张量融合网络。 这些代码适用于我们的ACL2018人类多峰语言计算建模研讨会论文: @inproceedings{tian2018polarity, title={Polarity and Intensity: the Two Aspects of Sentiment Analysis}, author={Tian, Leimin and Lai, Cather

文件下载

资源详情

[{"title":"( 31 个子文件 122KB ) ACL2018-MultimodalMultitaskSentimentAnalysis:ACL2018多模语言研讨会代码","children":[{"title":"ACL2018-MultimodalMultitaskSentimentAnalysis-master","children":[{"title":"multimodal","children":[{"title":"DL_tri.py <span style='color:#111;'> 12.84KB </span>","children":null,"spread":false},{"title":"DL_uno.py <span style='color:#111;'> 9.13KB </span>","children":null,"spread":false},{"title":"TFN_pol.py <span style='color:#111;'> 11.27KB </span>","children":null,"spread":false},{"title":"FL_int.py <span style='color:#111;'> 10.40KB </span>","children":null,"spread":false},{"title":"TFN_uno.py <span style='color:#111;'> 9.73KB </span>","children":null,"spread":false},{"title":"FL_uno.py <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false},{"title":"DL_pol.py <span style='color:#111;'> 10.67KB </span>","children":null,"spread":false},{"title":"TFN_int.py <span style='color:#111;'> 11.90KB </span>","children":null,"spread":false},{"title":"TFN_tri.py <span style='color:#111;'> 13.44KB </span>","children":null,"spread":false},{"title":"FL_pol.py <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"DL_int.py <span style='color:#111;'> 11.30KB </span>","children":null,"spread":false},{"title":"HL_uno.py <span style='color:#111;'> 9.23KB </span>","children":null,"spread":false},{"title":"HL_int.py <span style='color:#111;'> 11.40KB </span>","children":null,"spread":false},{"title":"HL_tri.py <span style='color:#111;'> 12.94KB </span>","children":null,"spread":false},{"title":"FL_tri.py <span style='color:#111;'> 11.93KB </span>","children":null,"spread":false},{"title":"HL_pol.py <span style='color:#111;'> 10.78KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"unimodal","children":[{"title":"V_unimodal_tri.py <span style='color:#111;'> 9.82KB </span>","children":null,"spread":false},{"title":"A_unimodal_uno.py <span style='color:#111;'> 6.24KB </span>","children":null,"spread":false},{"title":"T_unimodal_pol.py <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"T_unimodal_uno.py <span style='color:#111;'> 4.95KB </span>","children":null,"spread":false},{"title":"T_unimodal_tri.py <span style='color:#111;'> 7.69KB </span>","children":null,"spread":false},{"title":"CaseStudy_A_unimodal_tri.py <span style='color:#111;'> 12.28KB </span>","children":null,"spread":false},{"title":"V_unimodal_uno.py <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"A_unimodal_tri.py <span style='color:#111;'> 10.11KB </span>","children":null,"spread":false},{"title":"A_unimodal_pol.py <span style='color:#111;'> 7.78KB </span>","children":null,"spread":false},{"title":"A_unimodal_int.py <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"T_unimodal_int.py <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false},{"title":"V_unimodal_pol.py <span style='color:#111;'> 8.01KB </span>","children":null,"spread":false},{"title":"V_unimodal_int.py <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false}],"spread":false},{"title":"acl2018_appendix.pdf <span style='color:#111;'> 31.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明