Handwritten-Digits-Classification:一种新颖的模型-源码

上传者: 42103128 | 上传时间: 2021-12-09 11:25:52 | 文件大小: 13.1MB | 文件类型: -
手写数字分类 一种对手写数字进行分类并与传统方法进行比较的新方法。 手写数字的 MNIST 数据集使用多层感知器神经网络、朴素贝叶斯分类器和一种新颖的混合模型 - 贝叶斯神经网络分类器进行分类。 ###介绍 MNIST 手写数字数据集的分类器:实现、分析和比较了多层感知器神经网络、朴素贝叶斯分类器和朴素贝叶斯和 mlp-nn 的混合模型:“贝叶斯神经网络”。 模型 参数 准确性 多层感知器神经网络 1个隐藏层 96.45% 朴素贝叶斯分类器 伯努利房车特点 83.98% 混合贝叶斯神经网络 在隐藏层,Multinoulli RV 特征 89.02% 混合贝叶斯神经网络 在输出层; Multinoulli RV 特点 90.66% 混合贝叶斯神经网络 在隐藏层; 高斯房车特点 91.63% 混合贝叶斯神经网络 在输出层,Guassian RV 特征 93.27% ###多层感

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明