[{"title":"( 28 个子文件 58.52MB ) TorchLRP:分层明智相关性传播(LRP)的PyTorch 1.6实施-源码","children":[{"title":"TorchLRP-master","children":[{"title":"lrp","children":[{"title":"functional","children":[{"title":"linear.py <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 981B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 170B </span>","children":null,"spread":false},{"title":"maxpool.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"conv.py <span style='color:#111;'> 6.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"trace.py <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"linear.py <span style='color:#111;'> 641B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 305B </span>","children":null,"spread":false},{"title":"maxpool.py <span style='color:#111;'> 308B </span>","children":null,"spread":false},{"title":"conv.py <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"patterns.py <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"converter.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"sequential.py <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.yml <span style='color:#111;'> 255B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"examples","children":[{"title":"models","children":[{"title":"mnist_model.pth <span style='color:#111;'> 24.60MB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"explain_vgg.py <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"plots","children":[{"title":"mnist_explanations.png <span style='color:#111;'> 190.90KB </span>","children":null,"spread":false},{"title":"vgg19_explanations.png <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"vgg16_explanations.png <span style='color:#111;'> 7.63MB </span>","children":null,"spread":false}],"spread":true},{"title":"visualization.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"explain_mnist.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"patterns","children":[{"title":"mnist_pattern_all.pkl <span style='color:#111;'> 24.59MB </span>","children":null,"spread":false},{"title":"mnist_pattern_pos.pkl <span style='color:#111;'> 24.59MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".gitignore <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.58KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]