上传者: 42101720
|
上传时间: 2021-12-06 20:22:25
|
文件大小: 495KB
|
文件类型: -
PointNet:针对3D分类和分割的点集深度学习
由斯坦福大学的 ,,, 。
介绍
这项工作基于我们的,该将在CVPR 2017中发表。我们为点云(作为无序点集)提出了一种新颖的深层网络架构。 您也可以查看我们的以获得更深入的介绍。
点云是几何数据结构的一种重要类型。 由于格式不规则,大多数研究人员将此类数据转换为规则的3D体素网格或图像集合。 但是,这使数据变得不必要地庞大并引起问题。 在本文中,我们设计了一种直接消耗点云的新型神经网络,该网络很好地考虑了输入中点的排列不变性。 我们的网络名为PointNet,为从对象分类,零件分割到场景语义解析的应用程序提供了统一的体系结构。 虽然很简