上传者: 42099942
|
上传时间: 2021-11-07 09:52:27
|
文件大小: 15.1MB
|
文件类型: -
Global-Wheat-Detection
比赛简介
比赛描述
为了获得有关全世界麦田的大量准确数据,植物科学家使用“小麦头”(包含谷物的植物上的穗)的图像检测。这些图像用于估计不同品种的小麦头的密度和大小。但是,在室外野外图像中进行准确的小麦头检测可能在视觉上具有挑战性。密集的小麦植株经常重叠,并且风会使照片模糊。两者都使得难以识别单头。此外,外观会因成熟度,颜色,基因型和头部方向而异。最后,由于小麦在世界范围内种植,因此必须考虑不同的品种,种植密度,样式和田间条件。为小麦表型开发的模型需要在不同的生长环境之间进行概括。当前的检测方法涉及一阶段和两阶段的检测器(Yolo-V3和Faster-RCNN),但是即使在使用大型数据集进行训练时,仍然存在对训练区域的偏倚。
The is led by nine research institutes from seven countries: