stylized_image_captioning:在Pytorch中使用LSTM生成样式化的图像字幕

上传者: 42099755 | 上传时间: 2022-04-27 18:12:31 | 文件大小: 212KB | 文件类型: ZIP
实施StyleNet:使用LSTM生成样式化的图像标题 战队:蔡丽莎,刘德华 介绍 该项目的目的是实现一种图像字幕模型,该模型具有生成风格化字幕(浪漫或有趣)的能力。 我们将基于Microsoft Research Redmond的论文“ StyleNet:用样式生成有吸引力的视觉字幕”建立模型。 我们的模型将以Pytorch编写。 数据 我们的模型使用两个数据集。 第一个是具有图像和事实字幕的Flickr10k数据集,该数据集用于我们的图像字幕任务。 对于我们的语言模型,我们将使用由原始论文的作者发布的FlickrStyle 7k数据集。 技术概述 LSTM模型 我们将从本文应用因式分解LSTM模型。 对于图像字幕,文献中常用的策略是采用预先训练的CNN模型作为编码器,以将图像映射到固定尺寸的特征向量,然后使用LSTM模型作为解码器,以基于图像向量生成字幕。 在这里,“分解的LSTM”

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明