上传者: 42099070
|
上传时间: 2022-03-13 23:13:46
|
文件大小: 5.47MB
|
文件类型: -
本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。
1 简介
本项目基于paddlepaddle2.0,结合长短期记忆(Long short-term memory, LSTM),以唐诗为数据集通过监督学习的方式,训练生成唐诗。
参考文档:
1.1 LSTM解决什么问题?
RNN突出的优点之一就是可以用来连接先前的信息到当前的任务上,有时候,我们仅仅需要知道先前的信息来执行当前的任务。例如,我们有一个语言模型用来基于先前的词来预测下一个词。如果试着预测 “the clouds are in the ___ ” 最后的词,我们并不需要任何其他的上下文下一个词显然就应该是sk