CBIS-DDSM深度学习-源码

上传者: 42098892 | 上传时间: 2021-05-07 21:36:32 | 文件大小: 15.81MB | 文件类型: ZIP
CBIS-DDSM深度学习

文件下载

资源详情

[{"title":"( 66 个子文件 15.81MB ) CBIS-DDSM深度学习-源码","children":[{"title":"Deep-Learning-for-CBIS-DDSM-main","children":[{"title":"doc","children":[{"title":"project.log <span style='color:#111;'> 27.09KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"label_benign_malign.png <span style='color:#111;'> 23.51KB </span>","children":null,"spread":false},{"title":"pretrained_networks.png <span style='color:#111;'> 20.93KB </span>","children":null,"spread":false},{"title":"scratch_matrix.png <span style='color:#111;'> 21.59KB </span>","children":null,"spread":false},{"title":"scratch_accuracy.png <span style='color:#111;'> 74.92KB </span>","children":null,"spread":false},{"title":"4.1","children":[{"title":"1_acc.png <span style='color:#111;'> 59.68KB </span>","children":null,"spread":false},{"title":"Siamese","children":[{"title":"Conf_MatrixFT.png <span style='color:#111;'> 11.86KB </span>","children":null,"spread":false},{"title":"Conf_MatrixFT_drop.png <span style='color:#111;'> 12.03KB </span>","children":null,"spread":false},{"title":"Conf_Matrix_fe.png <span style='color:#111;'> 11.84KB </span>","children":null,"spread":false},{"title":"Model.png <span style='color:#111;'> 14.95KB </span>","children":null,"spread":false},{"title":"AccuracyFT.png <span style='color:#111;'> 25.31KB </span>","children":null,"spread":false},{"title":"AccuracyFT_drop.png <span style='color:#111;'> 26.73KB </span>","children":null,"spread":false},{"title":"Accuracy_fe.png <span style='color:#111;'> 24.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"2_acc.png <span style='color:#111;'> 59.51KB </span>","children":null,"spread":false},{"title":"1_matrix.png <span style='color:#111;'> 23.64KB </span>","children":null,"spread":false},{"title":"2_matrix.png <span style='color:#111;'> 23.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"scratch_training.png <span style='color:#111;'> 15.67KB </span>","children":null,"spread":false},{"title":"scratch_model.png <span style='color:#111;'> 36.95KB </span>","children":null,"spread":false},{"title":"2.1-da","children":[{"title":"da_accuracy.png <span style='color:#111;'> 67.88KB </span>","children":null,"spread":false},{"title":"da_matrix.png <span style='color:#111;'> 19.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"Task 3","children":[{"title":"VGG16 3.2","children":[{"title":"Conf_Matrix.png <span style='color:#111;'> 11.83KB </span>","children":null,"spread":false},{"title":"Accuracy.png <span style='color:#111;'> 29.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"VGG19 3.2","children":[{"title":"Conf_Matrix.png <span style='color:#111;'> 11.56KB </span>","children":null,"spread":false},{"title":"Accuracy.png <span style='color:#111;'> 26.13KB </span>","children":null,"spread":false}],"spread":false},{"title":"VGG16 3.1","children":[{"title":"settings.png <span style='color:#111;'> 16.05KB </span>","children":null,"spread":false},{"title":"FE","children":[{"title":"Conf_Matrix.png <span style='color:#111;'> 12.30KB </span>","children":null,"spread":false},{"title":"Accuracy.png <span style='color:#111;'> 27.03KB </span>","children":null,"spread":false}],"spread":false},{"title":"FT","children":[{"title":"Conf_Matrix.png <span style='color:#111;'> 11.40KB </span>","children":null,"spread":false},{"title":"Accuracy_drop.png <span style='color:#111;'> 26.60KB </span>","children":null,"spread":false},{"title":"Accuracy.png <span style='color:#111;'> 26.83KB </span>","children":null,"spread":false},{"title":"Conf_Matrix_drop.png <span style='color:#111;'> 12.33KB </span>","children":null,"spread":false}],"spread":false},{"title":"Conf Matrix.png <span style='color:#111;'> 21.55KB </span>","children":null,"spread":false},{"title":"Model.png <span style='color:#111;'> 11.77KB </span>","children":null,"spread":false},{"title":"model compile.png <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"VGG16.png <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"Accuracy.png <span style='color:#111;'> 64.81KB </span>","children":null,"spread":false}],"spread":false},{"title":"VGG19 3.1","children":[{"title":"ModelCode.png <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false},{"title":"FE","children":[{"title":"Conf_Matrix.png <span style='color:#111;'> 12.33KB </span>","children":null,"spread":false},{"title":"Accuracy.png <span style='color:#111;'> 28.09KB </span>","children":null,"spread":false}],"spread":false},{"title":"Conf Matrix.png <span style='color:#111;'> 19.10KB </span>","children":null,"spread":false},{"title":"Model.png <span style='color:#111;'> 11.81KB </span>","children":null,"spread":false},{"title":"Parameters.png <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"Learning rate.png <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"Accuracy.png <span style='color:#111;'> 64.59KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"label_mass_calc.png <span style='color:#111;'> 24.49KB </span>","children":null,"spread":false},{"title":"val_label_distribution.png <span style='color:#111;'> 32.69KB </span>","children":null,"spread":false},{"title":"2.2","children":[{"title":"7_acc.png <span style='color:#111;'> 85.34KB </span>","children":null,"spread":false},{"title":"5_acc.png <span style='color:#111;'> 90.42KB </span>","children":null,"spread":false},{"title":"7_matrix.png <span style='color:#111;'> 41.33KB </span>","children":null,"spread":false},{"title":"7_weights.png <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"0_acc.png <span style='color:#111;'> 82.27KB </span>","children":null,"spread":false},{"title":"5_test.png <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"1_model.png <span style='color:#111;'> 40.73KB </span>","children":null,"spread":false},{"title":"5_matrix.png <span style='color:#111;'> 41.60KB </span>","children":null,"spread":false},{"title":"0_matrix.png <span style='color:#111;'> 18.81KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"Tests performance.xlsx <span style='color:#111;'> 28.17KB </span>","children":null,"spread":false},{"title":"project.aux <span style='color:#111;'> 10.43KB </span>","children":null,"spread":false},{"title":"project.synctex.gz <span style='color:#111;'> 121.62KB </span>","children":null,"spread":false},{"title":"project.tex <span style='color:#111;'> 43.24KB </span>","children":null,"spread":false},{"title":"project.toc <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"project.pdf <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false}],"spread":true},{"title":"papers","children":[{"title":"Automatic mass detection in mammograms using deep convolutional neural networks.pdf <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"Multi-View Feature Fusion Based Four Views Model For Mammogram Classification Using CNN.pdf <span style='color:#111;'> 7.69MB </span>","children":null,"spread":false},{"title":"Deep Learning for Breast Cancer Diagnosis from Mammograms.pdf <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"Transfer Learning and Fine Tuning in Breast Mammogram Abnormalities Classification.pdf <span style='color:#111;'> 658.21KB </span>","children":null,"spread":false},{"title":"Deep Learning to Improve Breast Cancer Detection.pdf <span style='color:#111;'> 2.46MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明