AIOPS-Anomaly-Detection

上传者: 42098251 | 上传时间: 2022-12-19 09:34:34 | 文件大小: 11.34MB | 文件类型: ZIP
AIOPS异常检测 介绍 辅助运维人员进行异常检测,检测数据类型为日志数据和指标数据,内嵌多种异常检测方法,对于使用者来说,可以帮助快速理解和回顾当前的异常检测方法,并容易地重用现有的方法,也可进行进一步的定制或改进,这有助于避免耗时但重复的实验工作。 KPI异常检测 安装 git clone https://github.com/OS-ABC/AIOPS-Anomaly-Detection.git cd AIOPS-Anomaly-Detection/kpi pip install -r requirements.txt 依存关系 environment.yml文件是用conda管理依赖: conda env create -f environment.yml 笔记 需要TensorFlow> = 2.4。 跑步 KPI格式 KPI数据必须以以下格式存储在csv文件中: timest

文件下载

资源详情

[{"title":"( 54 个子文件 11.34MB ) AIOPS-Anomaly-Detection","children":[{"title":"AIOPS-Anomaly-Detection-main","children":[{"title":"log","children":[{"title":"deeplog","children":[{"title":"index.py <span style='color:#111;'> 5.52KB </span>","children":null,"spread":false},{"title":"analyse","children":[{"title":"train.py <span style='color:#111;'> 7.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"lib","children":[{"title":"common.py <span style='color:#111;'> 886B </span>","children":null,"spread":false},{"title":"param_lstm_model.py <span style='color:#111;'> 737B </span>","children":null,"spread":false},{"title":"param_value_detect.py <span style='color:#111;'> 13.06KB </span>","children":null,"spread":false},{"title":"execution_path_detect.py <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"spell.py <span style='color:#111;'> 7.58KB </span>","children":null,"spread":false},{"title":"log_key_lstm_model.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"hdfs","children":[{"title":"event2semantic_vec.json <span style='color:#111;'> 253.40KB </span>","children":null,"spread":false},{"title":"gen_train_data.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"hdfs_test_abnormal <span style='color:#111;'> 764.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"sampling_example","children":[{"title":"sample_hdfs.py <span style='color:#111;'> 930B </span>","children":null,"spread":false},{"title":"sample_bgl.py <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"structure_bgl.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"bgl","children":[{"title":"bgl2_100k <span style='color:#111;'> 12.65MB </span>","children":null,"spread":false},{"title":"templates.csv <span style='color:#111;'> 29.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"hdfs","children":[{"title":"HDFS_100k.log_structured.csv <span style='color:#111;'> 19.82MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"logdeep","children":[{"title":"models","children":[{"title":"lstm.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"utils.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 9.70KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"sample.py <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"log.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"demo","children":[{"title":"robustlog.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"deeplog.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"loganomaly.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"pca","children":[{"title":"data","children":[{"title":"HDFS","children":[{"title":"HDFS_100k.log_structured.csv <span style='color:#111;'> 19.82MB </span>","children":null,"spread":false},{"title":"anomaly_label.csv <span style='color:#111;'> 17.23MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data_instances.csv <span style='color:#111;'> 880.05KB </span>","children":null,"spread":false},{"title":"pca.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"index.py <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"kpi","children":[{"title":"environment.yml <span style='color:#111;'> 210B </span>","children":null,"spread":false},{"title":"bagel","children":[{"title":"testing.py <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 8.80KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 735B </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 7.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"sample_bagel","children":[{"title":"main.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"cpu4.csv <span style='color:#111;'> 452.20KB </span>","children":null,"spread":false},{"title":"server_res_eth1out_curve_61.csv <span style='color:#111;'> 558.70KB </span>","children":null,"spread":false},{"title":"server_res_eth1out_curve_6.csv <span style='color:#111;'> 558.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"plot_kpi.py <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"tests","children":[{"title":"test_utils.py <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"test_prediction.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"test_reconstruction.py <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false},{"title":"test_training.py <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"test_model.py <span style='color:#111;'> 8.72KB </span>","children":null,"spread":false},{"title":"test_preprocessing.py <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"test_augmentation.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"injectiontest","children":[{"title":"esload.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 6.50KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明