Seq2Seq-PyTorch:使用PyTorch的序列到序列实现-源码

上传者: 42098104 | 上传时间: 2021-09-14 16:23:17 | 文件大小: 13.11MB | 文件类型: ZIP
Seq2Seq-PyTorch 使用PyTorch的序列到序列实现 安装 克隆项目,进入项目目录并执行 python setup.py install 或者 pip install ./ 或简单地复制源代码。 推荐使用pip install ./ ,因为您可以先激活虚拟环境,然后再在该环境中安装软件包,而不会影响其他环境。 用法 使用之前,将seq2seq文件夹作为软件包安装或复制到项目目录。 看 一些功能 Trainer支持,尽管内存有限,但可以实现更大(等效)的批处理大小。 去做 支持光束搜索。 修理trainer 。 保存培训检查点时, trainer不会保存最佳时期模型。 因此,如果继续训练,则完成后保存的最佳时期实际上不是整个训练阶段的最佳时期,而是检查点之后的最佳时期。 (不知道培训师是否应在每个检查点保存最好的模型,这会使检查点文件变大。) (不确定是否有必要。)

文件下载

资源详情

[{"title":"( 37 个子文件 13.11MB ) Seq2Seq-PyTorch:使用PyTorch的序列到序列实现-源码","children":[{"title":"Seq2Seq-PyTorch-main","children":[{"title":"setup.py <span style='color:#111;'> 831B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"example","children":[{"title":"chatbot","children":[{"title":"run_train.py <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"cornell_movie_dialogs_corpus.zip <span style='color:#111;'> 9.46MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 361B </span>","children":null,"spread":false},{"title":"prepare_vocab_and_data.py <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false},{"title":"config.json <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"cal_bleu_on_inference_file.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"run_infer.py <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"translation-French_to_English","children":[{"title":"run_train.py <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"data.zip <span style='color:#111;'> 3.55MB </span>","children":null,"spread":false}],"spread":true},{"title":"seq2seq_translation_tutorial - PyTorch.ipynb <span style='color:#111;'> 42.04KB </span>","children":null,"spread":false},{"title":"seq2seq_translation_tutorial - PyTorch - module_using_my_implementation.ipynb <span style='color:#111;'> 126.62KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 383B </span>","children":null,"spread":false},{"title":"prepare_vocab_and_data.py <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"config.json <span style='color:#111;'> 826B </span>","children":null,"spread":false},{"title":"cal_bleu_on_inference_file.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"run_infer.py <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"seq2seq","children":[{"title":"trainer.py <span style='color:#111;'> 13.58KB </span>","children":null,"spread":false},{"title":"utilities.py <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 46B </span>","children":null,"spread":false},{"title":"generation_utils.py <span style='color:#111;'> 26.32KB </span>","children":null,"spread":false},{"title":"simple_rnn.py <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"beam_search_utils.py <span style='color:#111;'> 18.57KB </span>","children":null,"spread":false},{"title":"criterions.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"decoder_rnn.py <span style='color:#111;'> 11.85KB </span>","children":null,"spread":false},{"title":"attention.py <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false},{"title":"pad_rnn.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"seq2seq.py <span style='color:#111;'> 12.54KB </span>","children":null,"spread":false},{"title":"vocab.py <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"embedder.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"evaluator.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false}],"spread":false},{"title":"requeirements.txt <span style='color:#111;'> 62B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明