Transformer_models-源码

上传者: 42097668 | 上传时间: 2021-02-20 20:08:56 | 文件大小: 232KB | 文件类型: ZIP
BERT在Azure机器学习服务上 此回购包含终端到终端的食谱和的 (双向编码器交涉来自变形金刚)用语言表达模型。 伯特 BERT是一种语言表示模型,其特征在于可以有效捕获语料库中深层和微妙的文本关系。 在原始论文中,作者证明了BERT模型可以很容易地改编以构建用于许多NLP任务的最新模型,包括文本分类,命名实体识别和问题解答。 在此仓库中,我们提供了笔记本,使开发人员可以从语料库中重新训练BERT模型,并微调现有的BERT模型以解决专门的任务。 此回购中提供了的简要可快速开始使用BERT。 预训练 BERT预训练中的挑战 将BERT语言表示模型预训练到所需的准确性水平是非常具有挑战性的。 结果,大多数开发人员从在标准语料库(例如Wikipedia)上经过预训练的BERT模型开始,而不是从头开始训练它。 如果在与训练前步骤中使用的语料库相似的语料库上训练最终模型,则此策略效果很好。 但是,

文件下载

资源详情

[{"title":"( 52 个子文件 232KB ) Transformer_models-源码","children":[{"title":"transformer_models-master","children":[{"title":"docs","children":[{"title":"bert-intro.md <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"artifacts.md <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"dataprep.md <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"huggingface_models","children":[{"title":"modeling_electra.py <span style='color:#111;'> 21.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"pretrain","children":[{"title":"PyTorch","children":[{"title":"models.py <span style='color:#111;'> 10.96KB </span>","children":null,"spread":false},{"title":"text.py <span style='color:#111;'> 107B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 356B </span>","children":null,"spread":false},{"title":"azureml_adapter.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 697B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 24.15KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"benchmark.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"configuration.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"dataprep","children":[{"title":"create_pretraining.py <span style='color:#111;'> 4.01KB </span>","children":null,"spread":false},{"title":"single_line_doc_file_creation.py <span style='color:#111;'> 905B </span>","children":null,"spread":false},{"title":"split_data_into_files.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"sentence_segmentation.py <span style='color:#111;'> 612B </span>","children":null,"spread":false}],"spread":false},{"title":"distributed_apex.py <span style='color:#111;'> 24.49KB </span>","children":null,"spread":false},{"title":"sources.py <span style='color:#111;'> 9.34KB </span>","children":null,"spread":false},{"title":"checkpoint.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"BERT_Pretrain.ipynb <span style='color:#111;'> 17.14KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"configs","children":[{"title":"bert-large-single-node.json <span style='color:#111;'> 1019B </span>","children":null,"spread":false},{"title":"bert-base-single-node-rui.json <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"bert-base.json <span style='color:#111;'> 987B </span>","children":null,"spread":false},{"title":"electra-small-single-node-rui.json <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"bert-base-single-node.json <span style='color:#111;'> 1013B </span>","children":null,"spread":false},{"title":"bert-large.json <span style='color:#111;'> 993B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"single_node_bert.lsf <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"single_node_electra.lsf <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"finetune","children":[{"title":"run_classifier_azureml.py <span style='color:#111;'> 45.75KB </span>","children":null,"spread":false},{"title":"evaluate_squad.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"PyTorch","children":[{"title":"run_finetuning_glue.py <span style='color:#111;'> 37.09KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"azureml_bert_util.py <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"Pretrained-BERT-GLUE.ipynb <span style='color:#111;'> 19.20KB </span>","children":null,"spread":false},{"title":"BERT_Eval_GLUE.ipynb <span style='color:#111;'> 13.44KB </span>","children":null,"spread":false},{"title":"Pretrained-BERT-NER.ipynb <span style='color:#111;'> 46.99KB </span>","children":null,"spread":false},{"title":"BERT_Eval_SQUAD.ipynb <span style='color:#111;'> 12.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"run_finetuning_glue_horovodrun.py <span style='color:#111;'> 34.22KB </span>","children":null,"spread":false},{"title":"dockerfile <span style='color:#111;'> 317B </span>","children":null,"spread":false}],"spread":true},{"title":"run_squad_azureml.py <span style='color:#111;'> 45.84KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"single_node_bert_fine_tuning.lsf <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"single_node_electra_fine_tuning.lsf <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"TensorFlow","children":[{"title":"run_classifier.py <span style='color:#111;'> 32.15KB </span>","children":null,"spread":false},{"title":"download_model_and_dataset.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"Tensorflow-BERT-AzureML.ipynb <span style='color:#111;'> 139.93KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明