speech:语音到文本的端到端模型的PyTorch实现

上传者: 42097533 | 上传时间: 2024-01-15 10:50:42 | 文件大小: 112KB | 文件类型: ZIP
演讲 语音是一个开放源代码包,用于构建用于自动语音识别的端到端模型。 当前支持关注的序列到序列模型,连接器时间分类和RNN序列转换器。 该软件的目的是促进语音识别的端到端模型的研究。 这些模型在PyTorch中实现。 该软件仅在Python3.6中经过测试。 我们不会为Python2.7提供向后兼容性。 安装 我们建议创建一个虚拟环境并在其中安装python要求。 virtualenv source /bin/activate pip install -r requirements.txt 然后按照适用于您的计算机的版本的安装说明进行操作。 安装所有python需求后,从顶层目录运行: make 构建过程需要CMake以及Make。 之后,从仓库根目录获取setup.sh 。 source setup

文件下载

资源详情

[{"title":"( 50 个子文件 112KB ) speech:语音到文本的端到端模型的PyTorch实现","children":[{"title":"speech-master","children":[{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"eval.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"seq2seq_test.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"io_test.py <span style='color:#111;'> 767B </span>","children":null,"spread":false},{"title":"shared.py <span style='color:#111;'> 625B </span>","children":null,"spread":false},{"title":"test0.wav <span style='color:#111;'> 38.42KB </span>","children":null,"spread":false},{"title":"loader_test.py <span style='color:#111;'> 958B </span>","children":null,"spread":false},{"title":"test1.wav <span style='color:#111;'> 53.08KB </span>","children":null,"spread":false},{"title":"ctc_test.py <span style='color:#111;'> 901B </span>","children":null,"spread":false},{"title":"test.json <span style='color:#111;'> 532B </span>","children":null,"spread":false},{"title":"model_test.py <span style='color:#111;'> 638B </span>","children":null,"spread":false},{"title":"wave_test.py <span style='color:#111;'> 303B </span>","children":null,"spread":false}],"spread":true},{"title":"examples","children":[{"title":".gitignore <span style='color:#111;'> 13B </span>","children":null,"spread":false},{"title":"timit","children":[{"title":".gitignore <span style='color:#111;'> 12B </span>","children":null,"spread":false},{"title":"transducer_config.json <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"ctc_config.json <span style='color:#111;'> 725B </span>","children":null,"spread":false},{"title":"data_prep.sh <span style='color:#111;'> 83B </span>","children":null,"spread":false},{"title":"seq2seq_config.json <span style='color:#111;'> 884B </span>","children":null,"spread":false},{"title":"phones.60-48-39.map <span style='color:#111;'> 515B </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"score.py <span style='color:#111;'> 907B </span>","children":null,"spread":false}],"spread":true},{"title":"librispeech","children":[{"title":"config.json <span style='color:#111;'> 576B </span>","children":null,"spread":false},{"title":"download.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"wsj","children":[{"title":".gitignore <span style='color:#111;'> 12B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 483B </span>","children":null,"spread":false},{"title":"preprocess.sh <span style='color:#111;'> 912B </span>","children":null,"spread":false},{"title":"seq2seq_config.json <span style='color:#111;'> 891B </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"train.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"setup.sh <span style='color:#111;'> 207B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 199B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 349B </span>","children":null,"spread":false},{"title":"speech","children":[{"title":"utils","children":[{"title":"io.py <span style='color:#111;'> 655B </span>","children":null,"spread":false},{"title":"convert.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"wave.py <span style='color:#111;'> 449B </span>","children":null,"spread":false},{"title":"data_helpers.py <span style='color:#111;'> 492B </span>","children":null,"spread":false},{"title":"score.py <span style='color:#111;'> 480B </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"seq2seq.py <span style='color:#111;'> 11.28KB </span>","children":null,"spread":false},{"title":"ctc_model.py <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"ctc_decoder.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 175B </span>","children":null,"spread":false},{"title":"transducer_model.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"loader.py <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明