RBF-Softmax-源码

上传者: 42097189 | 上传时间: 2021-04-07 10:48:22 | 文件大小: 4.17MB | 文件类型: ZIP
RBF软件 是一种简单但有效的深度神经网络图像分类损失函数。 用编写并从修改过的RBF-Softmax项目。 在RBF-Softmax中,对数由RBF内核计算,然后由超参数缩放。 因此,此处将最后一个FC中的权重视为类原型。 RBF-Softmax管道 MNIST玩具演示可视化的RBF-Softmax和其他损失。 RBF软件 gif后面是在MNIST上训练的RBF-Softmax的2D特征可视化。 随着训练的进行,内部阶级的距离越来越小。 功能可见。 介绍 培训和测试RBF-Softmax 由于RBF-Softmax使用作为代码库,因此大多数安装遵循pycls。 请参考以获得安装说明。 安装后,请参阅以获取有关使用RBF-Softmax进行培训和评估的基本说明和示例命令。 模型动物园 我们提供了一些最终结果和预训练的模型,可以在下载。 请注意,我们在论文中报告了整个培训期

文件下载

资源详情

[{"title":"( 57 个子文件 4.17MB ) RBF-Softmax-源码","children":[{"title":"RBF-Softmax-master","children":[{"title":"configs","children":[{"title":"EffNet-B0_RBF_8gpu.yaml <span style='color:#111;'> 542B </span>","children":null,"spread":false},{"title":"EffNet-B1_RBF_8gpu.yaml <span style='color:#111;'> 542B </span>","children":null,"spread":false},{"title":"ResNet-50-RBF_8gpu.yaml <span style='color:#111;'> 564B </span>","children":null,"spread":false},{"title":"EffNet-B4_RBF_8gpu.yaml <span style='color:#111;'> 541B </span>","children":null,"spread":false}],"spread":true},{"title":"pycls","children":[{"title":"models","children":[{"title":"anynet.py <span style='color:#111;'> 14.88KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"effnet.py <span style='color:#111;'> 8.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"losses","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"rbflogit.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"core","children":[{"title":"distributed.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"logging.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 11.40KB </span>","children":null,"spread":false},{"title":"meters.py <span style='color:#111;'> 8.75KB </span>","children":null,"spread":false},{"title":"checkpoint.py <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"net.py <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"benchmark.py <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false},{"title":"plotting.py <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"builders.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"timer.py <span style='color:#111;'> 979B </span>","children":null,"spread":false},{"title":"io.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"cifar10.py <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"loader.py <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"imagenet.py <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"tools","children":[{"title":"test_net.py <span style='color:#111;'> 635B </span>","children":null,"spread":false},{"title":"train_net.py <span style='color:#111;'> 622B </span>","children":null,"spread":false},{"title":"time_net.py <span style='color:#111;'> 629B </span>","children":null,"spread":false}],"spread":true},{"title":"setup.py <span style='color:#111;'> 293B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"DATA.md <span style='color:#111;'> 384B </span>","children":null,"spread":false},{"title":"GETTING_STARTED.md <span style='color:#111;'> 831B </span>","children":null,"spread":false},{"title":"MODEL_ZOO.md <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"IMGS","children":[{"title":"vis_comp.png <span style='color:#111;'> 614.04KB </span>","children":null,"spread":false},{"title":"imagenet_result.png <span style='color:#111;'> 392.95KB </span>","children":null,"spread":false},{"title":"rbf_feat_vis","children":[{"title":"RBF_loss_epoch=49.eps <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"RBF_loss_epoch=30.eps <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"RBF_loss_epoch=0.eps <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"RBF_loss_epoch=36.eps <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"RBF_loss_epoch=12.eps <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"RBF_loss_epoch=6.eps <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"RBF_loss_epoch=18.eps <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"RBF_loss_epoch=24.eps <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false}],"spread":false},{"title":"Pipeline.png <span style='color:#111;'> 643.59KB </span>","children":null,"spread":false},{"title":"RBF_Softmax.gif <span style='color:#111;'> 219.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"INSTALL.md <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"dev","children":[{"title":".flake8 <span style='color:#111;'> 161B </span>","children":null,"spread":false},{"title":"linter.sh <span style='color:#111;'> 607B </span>","children":null,"spread":false},{"title":"complexity.json <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":".isort.cfg <span style='color:#111;'> 202B </span>","children":null,"spread":false},{"title":"test_complexity.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明