吴恩达机器学习的python-code.rar

上传者: 42036832 | 上传时间: 2021-03-25 11:17:46 | 文件大小: 31.2MB | 文件类型: RAR
吴恩达机器学习的python-code.rar

文件下载

资源详情

[{"title":"( 82 个子文件 31.2MB ) 吴恩达机器学习的python-code.rar","children":[{"title":"吴恩达机器学习的python-code","children":[{"title":"ex1-linear regression","children":[{"title":"ex1.pdf <span style='color:#111;'> 478.45KB </span>","children":null,"spread":false},{"title":"1.linear_regreesion_v1.ipynb <span style='color:#111;'> 261.10KB </span>","children":null,"spread":false},{"title":"ex1data2.txt <span style='color:#111;'> 704B </span>","children":null,"spread":false},{"title":"ex1data1.txt <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"ML-Exercise1.ipynb <span style='color:#111;'> 138.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex2-logistic regression","children":[{"title":"ML-Exercise2.ipynb <span style='color:#111;'> 101.02KB </span>","children":null,"spread":false},{"title":"1. logistic_regression_v1.ipynb <span style='color:#111;'> 295.92KB </span>","children":null,"spread":false},{"title":"ex2.pdf <span style='color:#111;'> 228.18KB </span>","children":null,"spread":false},{"title":"ex2data1.txt <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"ex2data2.txt <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex6-SVM","children":[{"title":"data","children":[{"title":"ex6data2.mat <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"spamSample2.txt <span style='color:#111;'> 253B </span>","children":null,"spread":false},{"title":"emailSample1.txt <span style='color:#111;'> 403B </span>","children":null,"spread":false},{"title":"ex6data3.mat <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"emailSample2.txt <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"vocab.txt <span style='color:#111;'> 21.62KB </span>","children":null,"spread":false},{"title":"spamSample1.txt <span style='color:#111;'> 697B </span>","children":null,"spread":false},{"title":"spamTrain.mat <span style='color:#111;'> 418.76KB </span>","children":null,"spread":false},{"title":"spamTest.mat <span style='color:#111;'> 110.08KB </span>","children":null,"spread":false},{"title":"ex6data1.mat <span style='color:#111;'> 981B </span>","children":null,"spread":false}],"spread":true},{"title":"4- spam filter.ipynb <span style='color:#111;'> 5.91KB </span>","children":null,"spread":false},{"title":"ex6.pdf <span style='color:#111;'> 327.78KB </span>","children":null,"spread":false},{"title":"1- linear SVM.ipynb <span style='color:#111;'> 77.44KB </span>","children":null,"spread":false},{"title":"2- Gaussian kernels.ipynb <span style='color:#111;'> 140.71KB </span>","children":null,"spread":false},{"title":"3- search for the best parameters.ipynb <span style='color:#111;'> 13.22KB </span>","children":null,"spread":false},{"title":"ML-Exercise6.ipynb <span style='color:#111;'> 179.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex3-neural network","children":[{"title":"ex3weights.mat <span style='color:#111;'> 77.73KB </span>","children":null,"spread":false},{"title":"ex3.pdf <span style='color:#111;'> 286.82KB </span>","children":null,"spread":false},{"title":"1- neural network.ipynb <span style='color:#111;'> 90.73KB </span>","children":null,"spread":false},{"title":"ex3data1.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false},{"title":"ML-Exercise3.ipynb <span style='color:#111;'> 16.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex7-kmeans and PCA","children":[{"title":"4- 2D PCA.ipynb <span style='color:#111;'> 67.02KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"bird_small.mat <span style='color:#111;'> 44.54KB </span>","children":null,"spread":false},{"title":"ex7data1.mat <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"ex7faces.mat <span style='color:#111;'> 10.52MB </span>","children":null,"spread":false},{"title":"bird_small.png <span style='color:#111;'> 32.26KB </span>","children":null,"spread":false},{"title":"ex7data2.mat <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"3- kmeans for image compression.ipynb <span style='color:#111;'> 300.83KB </span>","children":null,"spread":false},{"title":"2- 2D kmeans.ipynb <span style='color:#111;'> 160.17KB </span>","children":null,"spread":false},{"title":"5- PCA on face data.ipynb <span style='color:#111;'> 679.49KB </span>","children":null,"spread":false},{"title":"ML-Exercise7.ipynb <span style='color:#111;'> 387.80KB </span>","children":null,"spread":false},{"title":"ex7.pdf <span style='color:#111;'> 699.16KB </span>","children":null,"spread":false},{"title":"1- visualize data.ipynb <span style='color:#111;'> 45.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"ex5-bias vs variance","children":[{"title":"ML-Exercise5.ipynb <span style='color:#111;'> 156.56KB </span>","children":null,"spread":false},{"title":"ex5data1.mat <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"ex5.pdf <span style='color:#111;'> 182.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 215B </span>","children":null,"spread":false},{"title":"ex8-anomaly detection and recommendation","children":[{"title":"data","children":[{"title":"ex8data2.mat <span style='color:#111;'> 91.29KB </span>","children":null,"spread":false},{"title":"ex8data1.mat <span style='color:#111;'> 9.28KB </span>","children":null,"spread":false},{"title":"movie_ids.txt <span style='color:#111;'> 48.95KB </span>","children":null,"spread":false},{"title":"ex8_movieParams.mat <span style='color:#111;'> 196.48KB </span>","children":null,"spread":false},{"title":"ex8_movies.mat <span style='color:#111;'> 218.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"ML-Exercise8.ipynb <span style='color:#111;'> 154.11KB </span>","children":null,"spread":false},{"title":"ex8.pdf <span style='color:#111;'> 242.36KB </span>","children":null,"spread":false},{"title":"2- Recommender system.ipynb <span style='color:#111;'> 16.59KB </span>","children":null,"spread":false},{"title":"1- Anomaly detection.ipynb <span style='color:#111;'> 70.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"img","children":[{"title":"logistic_gradient.png <span style='color:#111;'> 15.27KB </span>","children":null,"spread":false},{"title":"logistic_cost.png <span style='color:#111;'> 19.50KB </span>","children":null,"spread":false},{"title":"mapped_feature.png <span style='color:#111;'> 6.50KB </span>","children":null,"spread":false},{"title":"nn_cost.png <span style='color:#111;'> 19.68KB </span>","children":null,"spread":false},{"title":"reg_cost.png <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"linear_reg_cost.png <span style='color:#111;'> 8.52KB </span>","children":null,"spread":false},{"title":"nn_model.png <span style='color:#111;'> 119.33KB </span>","children":null,"spread":false},{"title":"pca_projection.png <span style='color:#111;'> 22.59KB </span>","children":null,"spread":false},{"title":"gradient_checking.png <span style='color:#111;'> 8.44KB </span>","children":null,"spread":false},{"title":"rcmd_vectorized_grad.png <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"rcmd_gradient.png <span style='color:#111;'> 13.45KB </span>","children":null,"spread":false},{"title":"rcmd_cost.png <span style='color:#111;'> 17.51KB </span>","children":null,"spread":false},{"title":"cov_mat.png <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"reg_gradient.png <span style='color:#111;'> 8.19KB </span>","children":null,"spread":false},{"title":"linear_gradient.png <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"nn_reg_grad.png <span style='color:#111;'> 26.66KB </span>","children":null,"spread":false},{"title":"f1_score.png <span style='color:#111;'> 49.28KB </span>","children":null,"spread":false},{"title":"linear_cost.png <span style='color:#111;'> 5.32KB </span>","children":null,"spread":false},{"title":"nn_regcost.png <span style='color:#111;'> 35.36KB </span>","children":null,"spread":false},{"title":"linear_reg_gradient.png <span style='color:#111;'> 18.56KB </span>","children":null,"spread":false},{"title":"rcmd_reg_grad.png <span style='color:#111;'> 14.67KB </span>","children":null,"spread":false}],"spread":false},{"title":"ex4-NN back propagation","children":[{"title":"ex4weights.mat <span style='color:#111;'> 77.73KB </span>","children":null,"spread":false},{"title":"1- NN back propagation.ipynb <span style='color:#111;'> 194.93KB </span>","children":null,"spread":false},{"title":"ex4.pdf <span style='color:#111;'> 348.33KB </span>","children":null,"spread":false},{"title":"ex4data1.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false},{"title":"ML-Exercise4.ipynb <span style='color:#111;'> 23.23KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明