基于PSO-KELM的卫星参数区间预测代码 matlab版

上传者: 41990278 | 上传时间: 2022-04-21 11:00:51 | 文件大小: 763KB | 文件类型: ZIP
基于PSO-KELM的卫星参数区间预测代码 matlab版,使用粒子群算法(Particle Swarm Optimization,PSO)和核极限学习机(Kernel Extreme Learning Machine,KELM)算法相结合的卫星参数区间预测模型。

文件下载

资源详情

[{"title":"( 50 个子文件 763KB ) 基于PSO-KELM的卫星参数区间预测代码 matlab版","children":[{"title":"PSO_KELM-matlab","children":[{"title":"main.m <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"hiddenutils","children":[{"title":"linear_dyn.m <span style='color:#111;'> 724B </span>","children":null,"spread":false},{"title":"normmat.m <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"forcerow.m <span style='color:#111;'> 181B </span>","children":null,"spread":false},{"title":"spiral_dyn.m <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":"forcecol.m <span style='color:#111;'> 172B </span>","children":null,"spread":false}],"spread":true},{"title":"main1.m <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"linear_dyn.m <span style='color:#111;'> 724B </span>","children":null,"spread":false},{"title":"VN1_mean.mat <span style='color:#111;'> 391B </span>","children":null,"spread":false},{"title":"VN1_max.mat <span style='color:#111;'> 237B </span>","children":null,"spread":false},{"title":"license.txt <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"alpine.m <span style='color:#111;'> 617B </span>","children":null,"spread":false},{"title":"文档说明.txt <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"normmat.m <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"forcerow.m <span style='color:#111;'> 181B </span>","children":null,"spread":false},{"title":"DemoPSOBehavior.m <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"nnet","children":[{"title":"demoPSOnet.m <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"pso_neteval.m <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":"trainpso.m <span style='color:#111;'> 11.12KB </span>","children":null,"spread":false},{"title":"goplotpso4net.m <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"spiral_dyn.m <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":"goplotpso.m <span style='color:#111;'> 5.47KB </span>","children":null,"spread":false},{"title":"ELM_Kernel_t.m <span style='color:#111;'> 6.45KB </span>","children":null,"spread":false},{"title":"test_fun.m <span style='color:#111;'> 283B </span>","children":null,"spread":false},{"title":"A Particle Swarm Optimization (PSO) Primer.pdf <span style='color:#111;'> 723.75KB </span>","children":null,"spread":false},{"title":"Experiment2.m <span style='color:#111;'> 149B </span>","children":null,"spread":false},{"title":"goplotpso4demo.m <span style='color:#111;'> 4.61KB </span>","children":null,"spread":false},{"title":"licence.txt <span style='color:#111;'> 14.77KB </span>","children":null,"spread":false},{"title":"kernel_matrix.m <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"pso_Trelea_vectorized.m <span style='color:#111;'> 21.73KB </span>","children":null,"spread":false},{"title":"main2.m <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"Experiment1.m <span style='color:#111;'> 181B </span>","children":null,"spread":false},{"title":"IN1_mean_1.mat <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"testfunctions","children":[{"title":"DeJong_f3.m <span style='color:#111;'> 488B </span>","children":null,"spread":false},{"title":"ackley.m <span style='color:#111;'> 839B </span>","children":null,"spread":false},{"title":"f6.m <span style='color:#111;'> 299B </span>","children":null,"spread":false},{"title":"f6mod.m <span style='color:#111;'> 675B </span>","children":null,"spread":false},{"title":"DeJong_f2.m <span style='color:#111;'> 705B </span>","children":null,"spread":false},{"title":"Rastrigin.m <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"alpine.m <span style='color:#111;'> 617B </span>","children":null,"spread":false},{"title":"Rosenbrock.m <span style='color:#111;'> 697B </span>","children":null,"spread":false},{"title":"Foxhole.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"Griewank.m <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"NDparabola.m <span style='color:#111;'> 641B </span>","children":null,"spread":false},{"title":"f6_bubbles_dyn.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"f6_spiral_dyn.m <span style='color:#111;'> 842B </span>","children":null,"spread":false},{"title":"tripod.m <span style='color:#111;'> 860B </span>","children":null,"spread":false},{"title":"f6_linear_dyn.m <span style='color:#111;'> 593B </span>","children":null,"spread":false},{"title":"DeJong_f4.m <span style='color:#111;'> 971B </span>","children":null,"spread":false}],"spread":false},{"title":"forcecol.m <span style='color:#111;'> 172B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明