Bert对文本情感分类

上传者: 41327345 | 上传时间: 2022-04-26 09:10:45 | 文件大小: 754.67MB | 文件类型: ZIP
这是一个面向句子的情感分类问题。训练集和测试集已给出,使用训练集进行模型训练并对测试集中各句子进行情感预测。训练集包含10026行数据,测试集包含4850行数据。使用run_classifier.py对文本进行情感分类预测,模型为BERT-base基础版本模型。

文件下载

资源详情

[{"title":"( 43 个子文件 754.67MB ) Bert对文本情感分类","children":[{"title":"BERT-sentiment--classification","children":[{"title":"tokenization.py <span style='color:#111;'> 11.97KB </span>","children":null,"spread":false},{"title":"modeling_test.py <span style='color:#111;'> 8.98KB </span>","children":null,"spread":false},{"title":"run_classifier.py <span style='color:#111;'> 36.38KB </span>","children":null,"spread":false},{"title":"extract_features.py <span style='color:#111;'> 13.57KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"modeling.cpython-37.pyc <span style='color:#111;'> 25.00KB </span>","children":null,"spread":false},{"title":"tokenization.cpython-37.pyc <span style='color:#111;'> 9.54KB </span>","children":null,"spread":false},{"title":"optimization.cpython-37.pyc <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"chinese_L-12_H-768_A-12","children":[{"title":"vocab.txt <span style='color:#111;'> 106.97KB </span>","children":null,"spread":false},{"title":"bert_model.ckpt.index <span style='color:#111;'> 8.31KB </span>","children":null,"spread":false},{"title":"bert_model.ckpt.data-00000-of-00001 <span style='color:#111;'> 392.47MB </span>","children":null,"spread":false},{"title":"bert_config.json <span style='color:#111;'> 520B </span>","children":null,"spread":false},{"title":"bert_model.ckpt.meta <span style='color:#111;'> 883.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"uncased","children":[{"title":"uncased_L-12_H-768_A-12","children":[{"title":"vocab.txt <span style='color:#111;'> 226.08KB </span>","children":null,"spread":false},{"title":"bert_model.ckpt.index <span style='color:#111;'> 8.33KB </span>","children":null,"spread":false},{"title":"bert_model.ckpt.data-00000-of-00001 <span style='color:#111;'> 420.02MB </span>","children":null,"spread":false},{"title":"bert_config.json <span style='color:#111;'> 313B </span>","children":null,"spread":false},{"title":"bert_model.ckpt.meta <span style='color:#111;'> 883.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"we download the pre-train model in these place.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"glue","children":[{"title":"test.tsv <span style='color:#111;'> 533.56KB </span>","children":null,"spread":false},{"title":"train.tsv <span style='color:#111;'> 1.40MB </span>","children":null,"spread":false},{"title":"pre_sample.tsv <span style='color:#111;'> 55.75KB </span>","children":null,"spread":false},{"title":"dev.tsv <span style='color:#111;'> 146.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 616B </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 331B </span>","children":null,"spread":false},{"title":"BERT-sentiment--classification.iml <span style='color:#111;'> 534B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 319B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 13.83KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":null,"spread":false}],"spread":true},{"title":"tmp","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"get_result.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"run_pretraining.py <span style='color:#111;'> 18.23KB </span>","children":null,"spread":false},{"title":"data_cut_off.py <span style='color:#111;'> 925B </span>","children":null,"spread":false},{"title":"tokenization_test.py <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false},{"title":"run_classifier_with_tfhub.py <span style='color:#111;'> 11.16KB </span>","children":null,"spread":false},{"title":"run_squad.py <span style='color:#111;'> 45.44KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 12.71KB </span>","children":null,"spread":false},{"title":"modeling.py <span style='color:#111;'> 37.03KB </span>","children":null,"spread":false},{"title":"multilingual.md <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false},{"title":"optimization_test.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"create_pretraining_data.py <span style='color:#111;'> 14.88KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明