[{"title":"( 11 个子文件 24.8MB ) Uncertainty.rar","children":[{"title":"Uncertainty","children":[{"title":"Model Uncertainty Analysis for Metabolic Network Inference A Case Study in Bayesian Model Averagingtheorell2018.pdf <span style='color:#111;'> 361.00KB </span>","children":null,"spread":false},{"title":"PhD thesis-Uncertainty in Deep Learning.pdf <span style='color:#111;'> 8.89MB </span>","children":null,"spread":false},{"title":"“Why Should I Trust You_” Explaining the Predictions of Any Classifier1602.04938.pdf <span style='color:#111;'> 4.10MB </span>","children":null,"spread":false},{"title":"bayes","children":[{"title":"bayes_deep_learning1911.00104.pdf <span style='color:#111;'> 301.20KB </span>","children":null,"spread":false},{"title":"8681-practical-deep-learning-with-bayesian-principles.pdf <span style='color:#111;'> 2.23MB </span>","children":null,"spread":false}],"spread":true},{"title":"alex_kendall_phd_thesis_compressed.pdf <span style='color:#111;'> 5.09MB </span>","children":null,"spread":false},{"title":"Deep Uncertainty Estimation for Model-based Neural Architecture Search26.pdf <span style='color:#111;'> 410.99KB </span>","children":null,"spread":false},{"title":"What_uncertainties_do_we_need_in_Bayesian_deep_learning_for_computer_vision_[arXiv]1.pdf <span style='color:#111;'> 6.47MB </span>","children":null,"spread":false},{"title":"A General Framework1907.06890.pdf <span style='color:#111;'> 2.61MB </span>","children":null,"spread":false},{"title":"optsample","children":[{"title":"9472-a-simple-baseline-for-bayesian-uncertainty-in-deep-learning.pdf <span style='color:#111;'> 578.98KB </span>","children":null,"spread":false},{"title":"Importance Weighted Hierarchical Variational Inference1905.03290.pdf <span style='color:#111;'> 611.25KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]