核主元分析KPCA的降维特征提取以及故障检测应用-Kernel Principal Component Analysis (KPCA).zip

上传者: 39841848 | 上传时间: 2021-05-03 15:34:52 | 文件大小: 20KB | 文件类型: ZIP
核主元分析KPCA的降维特征提取以及故障检测应用-Kernel Principal Component Analysis .zip
本帖最后由 iqiukp 于 2018-11-9 15:02 编辑      核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用。主要功能有:(1)训练数据和测试数据的非线性主元提取(降维、特征提取)
(2)SPE和T2统计量及其控制限的计算
(3)故障检测

参考文献:
Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59: 223-234.

1. KPCA的建模过程(故障检测):
(1)获取训练数据(工业过程数据需要进行标准化处理)
(2)计算核矩阵
(3)核矩阵中心化
(4)特征值分解
(5)特征向量的标准化处理
(6)主元个数的选取
(7)计算非线性主成分(即降维结果或者特征提取结果)
(8)SPE和T2统计量的控制限计算
function model = kpca_train
% DESCRIPTION
% Kernel principal component analysis
%
%       mappedX = kpca_train
%
% INPUT
%   X            Training samples
%                N: number of samples
%                d: number of features
%   options      Parameters setting
%
% OUTPUT
%   model        KPCA model
%
%
% Created on 9th November, 2018, by Kepeng Qiu.



% number of training samples
L = size;

% Compute the kernel matrix
K = computeKM;

% Centralize the kernel matrix
unit = ones/L;
K_c = K-unit*K-K*unit unit*K*unit;

% Solve the eigenvalue problem
[V,D] = eigs;
lambda = diag;

% Normalize the eigenvalue
V_s = V ./ sqrt';

% Compute the numbers of principal component


% Extract the nonlinear component
if options.type == 1 % fault detection
    dims = find) >= 0.85,1, 'first');
else
    dims = options.dims;
end
mappedX  = K_c* V_s ;

% Store the results
model.mappedX =  mappedX ;
model.V_s = V_s;
model.lambda = lambda;
model.K_c = K_c;
model.L = L;
model.dims = dims;
model.X = X;
model.K = K;
model.unit = unit;
model.sigma = options.sigma;

% Compute the threshold
model.beta = options.beta;% corresponding probabilities
[SPE_limit,T2_limit] = comtupeLimit;
model.SPE_limit = SPE_limit;
model.T2_limit = T2_limit;

end复制代码2. KPCA的测试过程:
(1)获取测试数据(工业过程数据需要利用训练数据的均值和标准差进行标准化处理)
(2)计算核矩阵
(3)核矩阵中心化
(4)计算非线性主成分(即降维结果或者特征提取结果)
(5)SPE和T2统计量的计算
function [SPE,T2,mappedY] = kpca_test
% DESCRIPTION
% Compute th

文件下载

资源详情

[{"title":"( 8 个子文件 20KB ) 核主元分析KPCA的降维特征提取以及故障检测应用-Kernel Principal Component Analysis (KPCA).zip","children":[{"title":"kpca_train.m <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"computeKM.m <span style='color:#111;'> 435B </span>","children":null,"spread":false},{"title":"demo1.m <span style='color:#111;'> 889B </span>","children":null,"spread":false},{"title":"plotResult.m <span style='color:#111;'> 970B </span>","children":null,"spread":false},{"title":"demo2.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"circledata.mat <span style='color:#111;'> 15.37KB </span>","children":null,"spread":false},{"title":"kpca_test.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"comtupeLimit.m <span style='color:#111;'> 1002B </span>","children":null,"spread":false}],"spread":true}]

评论信息

  • qq_41458947 :
    为什么故障数据T2统计量总是错误
    2021-05-19

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明