[{"title":"( 51 个子文件 1.46MB ) Python-MITADE20K数据集语义分割场景解析的PyTorch实现","children":[{"title":"semantic-segmentation-pytorch-master","children":[{"title":"download_ADE20K.sh <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 8.95KB </span>","children":null,"spread":false},{"title":"demo_test.sh <span style='color:#111;'> 842B </span>","children":null,"spread":false},{"title":"models","children":[{"title":"utils.py <span style='color:#111;'> 577B </span>","children":null,"spread":false},{"title":"resnext.py <span style='color:#111;'> 5.23KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":"mobilenet.py <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 20.70KB </span>","children":null,"spread":false},{"title":"hrnet.py <span style='color:#111;'> 16.41KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 6.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false},{"title":"teaser","children":[{"title":"ADE_val_00001519.png <span style='color:#111;'> 697.99KB </span>","children":null,"spread":false},{"title":"ADE_val_00000278.png <span style='color:#111;'> 616.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"utils","children":[{"title":"th.py <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"distributed.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 15.83KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 95B </span>","children":null,"spread":false},{"title":"sampler.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"nn","children":[{"title":"parallel","children":[{"title":"__init__.py <span style='color:#111;'> 92B </span>","children":null,"spread":false},{"title":"data_parallel.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"modules","children":[{"title":"comm.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 449B </span>","children":null,"spread":false},{"title":"replicate.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"unittest.py <span style='color:#111;'> 835B </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"test_sync_batchnorm.py <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"test_numeric_batchnorm.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false}],"spread":false},{"title":"batchnorm.py <span style='color:#111;'> 13.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 110B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 56B </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 11.62KB </span>","children":null,"spread":false},{"title":"config","children":[{"title":"ade20k-resnet50dilated-ppm_deepsup.yaml <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"defaults.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"ade20k-resnet101dilated-ppm_deepsup.yaml <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"ade20k-mobilenetv2dilated-c1_deepsup.yaml <span style='color:#111;'> 762B </span>","children":null,"spread":false},{"title":"ade20k-resnet101-upernet.yaml <span style='color:#111;'> 740B </span>","children":null,"spread":false},{"title":"ade20k-resnet50-upernet.yaml <span style='color:#111;'> 738B </span>","children":null,"spread":false},{"title":"ade20k-resnet18dilated-ppm_deepsup.yaml <span style='color:#111;'> 758B </span>","children":null,"spread":false},{"title":"ade20k-hrnetv2.yaml <span style='color:#111;'> 725B </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"eval_multipro.py <span style='color:#111;'> 6.83KB </span>","children":null,"spread":false},{"title":"eval.py <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.38KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"training.odgt <span style='color:#111;'> 3.62MB </span>","children":null,"spread":false},{"title":"color150.mat <span style='color:#111;'> 502B </span>","children":null,"spread":false},{"title":"validation.odgt <span style='color:#111;'> 367.19KB </span>","children":null,"spread":false},{"title":"object150_info.csv <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 35B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]