论文研究-改进卷积神经网络在分类与推荐中的实例应用.pdf

上传者: 39841365 | 上传时间: 2022-05-26 20:22:54 | 文件大小: 1.28MB | 文件类型: PDF
在网络购物不断发展的背景下,基于服装图片的服装分类识别和搭配推荐具有给予消费者搭配建议并帮助商家促进销售的重要意义。深度学习作为机器学习领域的最新研究成果,建模与表征能力强大,在图像处理领域取得了突破成果;改进卷积神经网络通过加入批量归一化、改进卷积层结构、添加冗余分类器改进了原始GoogleNet卷积神经网络,提高了分类精确度和速度。对搭配库训练集进行图片增广,扩增数据集使其更加丰富全面,并提高精确度;运用改进卷积神经网络对增广后的数据集进行服装精细分类,得到图片的服装类别风格以及功能信息;使用感知哈希算法寻找套装图片库中的相似单品及其搭配,并根据精细分类得到图片性别、风格、功能信息,最终综合给出服装搭配推荐,具有重要的现实研究意义。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明