上传者: 39840924
|
上传时间: 2021-11-07 21:58:17
|
文件大小: 1.67MB
|
文件类型: -
常规毒理学实验方法周期长、耗资高,对现代药物研发和环境化合物安全性评估具有局限性,通过对化合物毒理性研究,提取1 047维分子指纹特征,提出去噪自编码神经网络无监督学习机制及对腐败特征的自联想学习特性提取隐含毒性化合物特征,实现化合物毒性预测和毒性化合物的活性预测。该方法在化合物毒性预测和活性预测中的预测精度分别为79.825%、80.85%,敏感性分别为79.62%、80.25%,特异性分别为80.03%、81.45%。实验结果表明,去噪自编码网络较浅层机器学习更适用于高通量化合物毒性预测,较传统自编码网络更具优越性。