[{"title":"( 68 个子文件 3.31MB ) Python-使用BERT进行多标签分类来AI挑战者的细粒度情感分析","children":[{"title":"sentiment_analysis_fine_grain-master","children":[{"title":"data_util_hdf5.py <span style='color:#111;'> 21.88KB </span>","children":null,"spread":false},{"title":"tokenization.py <span style='color:#111;'> 10.31KB </span>","children":null,"spread":false},{"title":"old","children":[{"title":"Preprocess_char_old.ipynb <span style='color:#111;'> 21.39KB </span>","children":null,"spread":false},{"title":"predict_bigru_char.py <span style='color:#111;'> 10.16KB </span>","children":null,"spread":false},{"title":"temp_covert.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"stopwords.txt <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"classifier_bigru.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"JoinAttLayer.py <span style='color:#111;'> 9.35KB </span>","children":null,"spread":false},{"title":"rcnn_retrain.py <span style='color:#111;'> 18.73KB </span>","children":null,"spread":false},{"title":"model_bigru_char.py <span style='color:#111;'> 17.39KB </span>","children":null,"spread":false},{"title":"validation_rcnn_char.py <span style='color:#111;'> 10.20KB </span>","children":null,"spread":false},{"title":"validation_bigru_char.py <span style='color:#111;'> 10.20KB </span>","children":null,"spread":false},{"title":"predict_rcnn_char.py <span style='color:#111;'> 10.16KB </span>","children":null,"spread":false},{"title":"model_capsule_char.py <span style='color:#111;'> 16.96KB </span>","children":null,"spread":false},{"title":"classifier_rcnn.py <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"model_rcnn_char.py <span style='color:#111;'> 16.96KB </span>","children":null,"spread":false},{"title":"classifier_capsule.py <span style='color:#111;'> 6.79KB </span>","children":null,"spread":false},{"title":"evaluate_char.py <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"train_transform.py <span style='color:#111;'> 10.51KB </span>","children":null,"spread":false}],"spread":false},{"title":"ai_challenger_sentiment_analysis_testa_20180816","children":[{"title":"README.txt <span style='color:#111;'> 119B </span>","children":null,"spread":false},{"title":"protocol.txt <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"preprocess_char","children":[{"title":"README.txt <span style='color:#111;'> 55B </span>","children":null,"spread":false}],"spread":true},{"title":"pretrain_task.py <span style='color:#111;'> 15.24KB </span>","children":null,"spread":false},{"title":"tokenizer_char.pickle <span style='color:#111;'> 283.06KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"img","children":[{"title":"bert_sa.jpg <span style='color:#111;'> 334.90KB </span>","children":null,"spread":false},{"title":"fine_grain.jpg <span style='color:#111;'> 147.97KB </span>","children":null,"spread":false},{"title":"bert_sentiment_analysis.jpg <span style='color:#111;'> 1.40MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"model","children":[{"title":"encoder.py <span style='color:#111;'> 6.68KB </span>","children":null,"spread":false},{"title":"bert_modeling.py <span style='color:#111;'> 37.40KB </span>","children":null,"spread":false},{"title":"config_transformer.py <span style='color:#111;'> 532B </span>","children":null,"spread":false},{"title":"poistion_wise_feed_forward.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"layer_norm_residual_conn.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"transfomer_model.py <span style='color:#111;'> 9.97KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"bert_cnn_fine_grain_model.py <span style='color:#111;'> 21.91KB </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 594B </span>","children":null,"spread":false},{"title":"bert_cnn_model.py <span style='color:#111;'> 22.65KB </span>","children":null,"spread":false},{"title":"multi_head_attention.py <span style='color:#111;'> 8.78KB </span>","children":null,"spread":false},{"title":"bert_model.py <span style='color:#111;'> 16.01KB </span>","children":null,"spread":false}],"spread":false},{"title":"README_bert_chinese_tutorial.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"train_cnn_fine_grain.py <span style='color:#111;'> 14.19KB </span>","children":null,"spread":false},{"title":"train_bert_fine_tuning.py <span style='color:#111;'> 12.89KB </span>","children":null,"spread":false},{"title":"BERT_BASE_DIR","children":[{"title":"readMe.md <span style='color:#111;'> 95B </span>","children":null,"spread":false}],"spread":true},{"title":"TEXT_DIR","children":[{"title":"readMe.md <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"train2.tsv <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"dev2.tsv <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"word2vec","children":[{"title":"README.txt <span style='color:#111;'> 19B </span>","children":null,"spread":false}],"spread":false},{"title":".idea","children":[{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"dictionaries","children":[{"title":"xuliang.xml <span style='color:#111;'> 86B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"run_classifier_multi_labels_bert.py <span style='color:#111;'> 39.09KB </span>","children":null,"spread":false},{"title":"preprocess_char.ipynb <span style='color:#111;'> 39.04KB </span>","children":null,"spread":false},{"title":"ai_challenger_sentiment_analysis_validationset_20180816","children":[{"title":"README.txt <span style='color:#111;'> 204B </span>","children":null,"spread":false},{"title":"protocol.txt <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false}],"spread":false},{"title":"ai_challenger_sentimetn_analysis_testb_20180816","children":[{"title":"README.txt <span style='color:#111;'> 120B </span>","children":null,"spread":false},{"title":"protocol.txt <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false}],"spread":false},{"title":"train_cnn_lm.py <span style='color:#111;'> 9.20KB </span>","children":null,"spread":false},{"title":"PRE_TRAIN_DIR","children":[{"title":"readMe.md <span style='color:#111;'> 444B </span>","children":null,"spread":false}],"spread":false},{"title":"evaluation_matrix.py <span style='color:#111;'> 9.86KB </span>","children":null,"spread":false},{"title":"bigru_char_checkpoint","children":[{"title":"README.txt <span style='color:#111;'> 44B </span>","children":null,"spread":false}],"spread":false},{"title":"run_pretraining.py <span style='color:#111;'> 18.33KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.84KB </span>","children":null,"spread":false},{"title":"ai_challenger_sentiment_analysis_trainingset_20180816","children":[{"title":"README.txt <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":"protocol.txt <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false}],"spread":false},{"title":"preprocess_word.ipynb <span style='color:#111;'> 2.39MB </span>","children":null,"spread":false},{"title":"create_pretraining_data.py <span style='color:#111;'> 14.85KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]