Python-PyTorch实现的CNNDailyMail文本摘要

上传者: 39840914 | 上传时间: 2021-03-10 19:31:51 | 文件大小: 25KB | 文件类型: ZIP
neural abstractive summarization (seq2seq copy (or pointer network) coverage) in pytorch on CNN/Daily Mail

文件下载

资源详情

[{"title":"( 16 个子文件 25KB ) Python-PyTorch实现的CNNDailyMail文本摘要","children":[{"title":"neural-summ-cnndm-pytorch-master","children":[{"title":"tuning_deepmind.sh <span style='color:#111;'> 329B </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"word_prob_layer.py <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 25.70KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"bleu.py <span style='color:#111;'> 5.62KB </span>","children":null,"spread":false},{"title":"utils_pg.py <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"lstm_dec_v2.py <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.91KB </span>","children":null,"spread":false},{"title":"prepare_data.py <span style='color:#111;'> 7.38KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 43B </span>","children":null,"spread":false},{"title":"configs.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"prepare_rouge.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"gru_dec.py <span style='color:#111;'> 6.19KB </span>","children":null,"spread":false},{"title":"lstm_dec_v1.py <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明