大型多视图视觉搜索的查询自适应哈希码排名

上传者: 38542223 | 上传时间: 2021-03-02 10:04:44 | 文件大小: 896KB | 文件类型: PDF
基于哈希的最近邻居搜索已在许多应用程序中变得有吸引力。 但是,在使用汉明距离排序时,散列中的量化通常会降低判别能力。 此外,对于大规模的视觉搜索,现有的散列方法不能直接支持对具有多个源的数据进行有效搜索,而文献表明自适应地合并来自不同源或视图的补充信息可以显着提高搜索性能。 为了解决这些问题,本文提出了一种新颖且通用的方法来构建具有多个视图的多个哈希表,并在按位和按表级别生成细粒度的排名结果。 对于每个哈希表,引入了查询自适应按位加权,以通过同时利用哈希函数的质量及其对最近邻居搜索的补充来减轻量化损失。 从表格的角度来看,针对不同的数据视图构建了多个哈希表作为联合索引,在该哈希表上,提出了特定于查询的排名融合,以通过散布在图表中对按位排名的所有结果进行排名。 在三个著名基准上进行图像搜索的综合实验表明,与最新方法相比,该方法在单表和多表搜索中可分别实现17.11%和20.28%的性能提升。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明