Python-基于LSTM三分类的文本情感分析

上传者: 39840387 | 上传时间: 2021-04-10 11:04:30 | 文件大小: 11.63MB | 文件类型: ZIP
文本情感分析作为NLP的常见任务,具有很高的实际应用价值。本文将采用LSTM模型,训练一个能够识别文本postive, neutral, negative三种情感的分类器。

文件下载

资源详情

[{"title":"( 13 个子文件 11.63MB ) Python-基于LSTM三分类的文本情感分析","children":[{"title":"SentimentAnalysis-master","children":[{"title":"lstm","children":[{"title":".ipynb_checkpoints","children":[{"title":"test-checkpoint.ipynb <span style='color:#111;'> 24.73KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.ipynb <span style='color:#111;'> 24.73KB </span>","children":null,"spread":false},{"title":"lstm_train.py <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"lstm_test.py <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"Word2vec_model.pkl <span style='color:#111;'> 6.95MB </span>","children":null,"spread":false},{"title":"lstm.h5 <span style='color:#111;'> 3.30MB </span>","children":null,"spread":false},{"title":"lstm.yml <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.75KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"neutral.csv <span style='color:#111;'> 2.12MB </span>","children":null,"spread":false},{"title":"neg.csv <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false},{"title":"pos.csv <span style='color:#111;'> 2.08MB </span>","children":null,"spread":false},{"title":"deal.py <span style='color:#111;'> 259B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

  • Dazai_Osamu0 :
    是Keras的111111111
    2021-01-18

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明