[{"title":"( 24 个子文件 1.64MB ) 基于蒙特卡洛树搜索和策略价值网络(强化学习)的AI五子棋算法","children":[{"title":"reGomoku","children":[{"title":"game.py <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"mcts_alphaZero.cpython-37.pyc <span style='color:#111;'> 7.35KB </span>","children":null,"spread":false},{"title":"game.cpython-37.pyc <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false},{"title":"mcts_pure.cpython-37.pyc <span style='color:#111;'> 7.55KB </span>","children":null,"spread":false},{"title":"policy_value_net_numpy.cpython-37.pyc <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false}],"spread":true},{"title":"mcts_pure.py <span style='color:#111;'> 7.01KB </span>","children":null,"spread":false},{"title":"best_policy_8_8_5.model <span style='color:#111;'> 465.79KB </span>","children":null,"spread":false},{"title":"policy_value_net_numpy.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"AlphaZero_Gomoku-master.iml <span style='color:#111;'> 467B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 14.79KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 562B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"policy_value_net.py <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"best_policy_8_8_5.model2 <span style='color:#111;'> 465.79KB </span>","children":null,"spread":false},{"title":"human_play.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"policy_value_net_tensorflow.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"best_policy_6_6_4.model2 <span style='color:#111;'> 407.93KB </span>","children":null,"spread":false},{"title":"policy_value_net_keras.py <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false},{"title":"best_policy_6_6_4.model <span style='color:#111;'> 407.93KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"mcts_alphaZero.py <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"policy_value_net_pytorch.py <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]