颜色熵matlab代码-Color_Image_Segmentation:使用几种最新的聚类算法(包括GMM,FCM,FSC和MEC)进行彩色

上传者: 38752628 | 上传时间: 2021-09-16 15:54:06 | 文件大小: 122KB | 文件类型: ZIP
颜色熵matlab代码Color_Image_Segmentation 使用几种最新的聚类算法对彩色图像进行分割,包括模糊c均值聚类(FCM),模糊子空间聚类(FSC),最大熵聚类(MEC)和高斯混合模型(GMM)。 Matlab代码。 FCM,FSC和MEC已在中引入。 GMM已在中引入。 为了获得更好的分割结果,可以适当调整超参数。 彩色图像拼合的示例 行图像: 运行demo_color_segmentation.m 细分结果: 流式细胞仪 FSC 机电公司 GMM 代码作者 王荣荣(kailugaji) 2020/7/5

文件下载

资源详情

[{"title":"( 25 个子文件 122KB ) 颜色熵matlab代码-Color_Image_Segmentation:使用几种最新的聚类算法(包括GMM,FCM,FSC和MEC)进行彩色","children":[{"title":"Color_Image_Segmentation-master","children":[{"title":"demo_fuzzy.m <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"Image data","children":[{"title":"1.jpg <span style='color:#111;'> 46.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"demo_GMM.m <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"Clustering Algorithms","children":[{"title":"GMM_kailugaji.m <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"logsumexp.m <span style='color:#111;'> 471B </span>","children":null,"spread":false},{"title":"FSC_kailugaji.m <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"MEC_kailugaji.m <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"FCM_kailugaji.m <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"Performance indexes","children":[{"title":"nmi.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"munkres.m <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false},{"title":"RandIndex.m <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"label_map.m <span style='color:#111;'> 459B </span>","children":null,"spread":false},{"title":"a <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"performance_index.m <span style='color:#111;'> 421B </span>","children":null,"spread":false}],"spread":true},{"title":"demo_color_segmentation.m <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"Clustering Results","children":[{"title":"Result_GMM.jpg <span style='color:#111;'> 1.90MB </span>","children":null,"spread":false},{"title":"Result_FSC.jpg <span style='color:#111;'> 1.90MB </span>","children":null,"spread":false},{"title":"Result_FCM.jpg <span style='color:#111;'> 1.90MB </span>","children":null,"spread":false},{"title":"Result_MEC.jpg <span style='color:#111;'> 1.90MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"iris.data <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"Initialization & Normalization","children":[{"title":"normlization.m <span style='color:#111;'> 441B </span>","children":null,"spread":false},{"title":"init_methods.m <span style='color:#111;'> 874B </span>","children":null,"spread":false},{"title":"litekmeans.m <span style='color:#111;'> 15.79KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明