matlab肌电信号处理代码-DB1-Ninapro-sEMG-Classification-:DB1-Ninapro-sEMG-分类-

上传者: 38751537 | 上传时间: 2021-06-10 16:59:15 | 文件大小: 130KB | 文件类型: ZIP
matlab肌电信号处理代码DB1-Ninapro-sEMG-分类- 根据Atzori等人的说法。 [Atzori,Manfredo等。 “用于非侵入性自然控制机器人手假体的心电图数据。” 科学数据1(2014):140053],第一个数据库包含从27位完整受试者(20位男性,7位女性; 25位右手,2位左手;年龄28±3.4岁)获得的数据。 第一个是官方的Ninapro存储库(数据引用1),该存储库还提供了上载每个数据库的分类结果以及有关分类过程的详细信息的机会。 第一个数据库由EMG 52类数据组成,该数据根据动作分为三种类型的练习。 它包括(1)手指的12个基本运动(2)腕部和手部构造的17个基本运动(3)23种抓握和功能性运动,共有(C = 52)个类别。 使用10个Otto Bock sEMG电极(给出10个通道矢量)记录的数据,重复运动次数为(R = 10)。 EMG通道1至8包含来自在前臂周围等距分布的电极的信号; 通道9和10包括来自位于肱浅肌屈肌和伸肌浅肌的电极的信号。 在将数据公开存储库之前,已执行了几个信号处理步骤(数据引用1和2)。 这些步骤包括同步,重新标记和

文件下载

资源详情

[{"title":"( 58 个子文件 130KB ) matlab肌电信号处理代码-DB1-Ninapro-sEMG-Classification-:DB1-Ninapro-sEMG-分类-","children":[{"title":"DB1-Ninapro-sEMG-Classification--master","children":[{"title":"E2_nTD_nAR_trainClassifier.m <span style='color:#111;'> 9.62KB </span>","children":null,"spread":false},{"title":"s3mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"E2run.m <span style='color:#111;'> 210B </span>","children":null,"spread":false},{"title":"s17mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s16mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"E3_ARtrainClassifier.m <span style='color:#111;'> 18.43KB </span>","children":null,"spread":false},{"title":"E1_nTDARtrainClassifier.m <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false},{"title":"E3_TDtrainClassifier.m <span style='color:#111;'> 18.52KB </span>","children":null,"spread":false},{"title":"s23mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s12mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s7m_trainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"getwlfeat.m <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"DB_nAR_trainClassifier.m <span style='color:#111;'> 18.84KB </span>","children":null,"spread":false},{"title":"s27mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s1m_trainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"Run_execution.m <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"E1fitcensembletrainClassifier.m <span style='color:#111;'> 7.80KB </span>","children":null,"spread":false},{"title":"s26mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s25mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"E1_ARtrainClassifier.m <span style='color:#111;'> 12.46KB </span>","children":null,"spread":false},{"title":"s4mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"RF_DB_trainClassifier.m <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"s14_E1_trainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s21mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s6_SVM_trainClassifier.m <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"E1_TDtrainClassifier.m <span style='color:#111;'> 18.47KB </span>","children":null,"spread":false},{"title":"s13mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"E3trainClassifier_nTF96p3.m <span style='color:#111;'> 6.67KB </span>","children":null,"spread":false},{"title":"s22_trainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s10_trainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"RForest_E1_trainClassifier.m <span style='color:#111;'> 7.88KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"s8_SVMtrainClassifier.m <span style='color:#111;'> 7.91KB </span>","children":null,"spread":false},{"title":"getiavfeat.m <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"s18mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"E1_nTDnARtrainClassifier.m <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false},{"title":"getrmsfeat.m <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"E1_nTD_trainClassifier.m <span style='color:#111;'> 6.14KB </span>","children":null,"spread":false},{"title":"s2mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s19mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s20_trainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"E1_TD_trainClassifier.m <span style='color:#111;'> 6.02KB </span>","children":null,"spread":false},{"title":"DB_TD_trainClassifier.m <span style='color:#111;'> 8.24KB </span>","children":null,"spread":false},{"title":"s15_trainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s11mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"s5mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"DB_nTDnAR_SFS_trainClassifier.m <span style='color:#111;'> 5.68KB </span>","children":null,"spread":false},{"title":"E1.m <span style='color:#111;'> 45.59KB </span>","children":null,"spread":false},{"title":"E2_TDtrainClassifier.m <span style='color:#111;'> 20.57KB </span>","children":null,"spread":false},{"title":"s24mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"E2.m <span style='color:#111;'> 59.76KB </span>","children":null,"spread":false},{"title":"E2_ARtrainClassifier.m <span style='color:#111;'> 19.79KB </span>","children":null,"spread":false},{"title":"E3.m <span style='color:#111;'> 74.56KB </span>","children":null,"spread":false},{"title":"s9mtrainClassifier.m <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"E3_nTD_nAR_trainClassifier.m <span style='color:#111;'> 9.60KB </span>","children":null,"spread":false},{"title":"getarfeat.m <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"s20_SVMdefault_trainClassifier.m <span style='color:#111;'> 7.91KB </span>","children":null,"spread":false},{"title":"getmavfeat.m <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明