融合FV-SIFT特征和深度卷积特征的车辆图像细粒度分类

上传者: 38750721 | 上传时间: 2023-02-02 19:31:44 | 文件大小: 2.51MB | 文件类型: PDF
针对现有的SIFT特征在车辆细粒度分类中存在的分类精度低的问题,提出了一种融合FV-SIFT特征和深度卷积特征的车辆图像细粒度分类算法。首先采用SIFT算法与Fisher Vector算法相结合的方式提取车辆图像的FV-SIFT特征,然后采用VGG-16卷积神经网络提取车辆图像的深度卷积特征,最后将FV-SIFT特征与深度卷积特征进行线性融合并采用支持向量机对融合后的车辆特征进行分类。实验结果表明,该方法的分类准确率达到82.3%,较FV-SIFT算法在分类准确率上提高了15.4%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明