图神经网络欺诈检测工具箱-DGFraud.zip

上传者: 38747087 | 上传时间: 2021-08-31 08:39:16 | 文件大小: 7.56MB | 文件类型: ZIP
DGFraud是基于图形神经网络(GNN)的工具箱,用于欺诈检测。它集成了基于GNN的最新欺诈检测模型的实现和比较。它还包括一些实用程序功能,例如图形预处理,图形采样和性能评估。可以在此处找到已实现模型的介绍。

文件下载

资源详情

[{"title":"( 40 个子文件 7.56MB ) 图神经网络欺诈检测工具箱-DGFraud.zip","children":[{"title":"DGFraud-master","children":[{"title":"DGFraud_logo.png <span style='color:#111;'> 17.24KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 7.31KB </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 6.91KB </span>","children":null,"spread":false}],"spread":true},{"title":".github","children":[{"title":"ISSUE_TEMPLATE","children":[{"title":"bug_report.md <span style='color:#111;'> 834B </span>","children":null,"spread":false},{"title":"feature_request.md <span style='color:#111;'> 595B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"algorithms","children":[{"title":"Player2Vec","children":[{"title":"Player2Vec.py <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"Player2Vec_main.py <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"GeniePath","children":[{"title":"GeniePath_main.py <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 795B </span>","children":null,"spread":false},{"title":"GeniePath.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"GEM","children":[{"title":"GEM.py <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 951B </span>","children":null,"spread":false},{"title":"GEM_main.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"SemiGNN","children":[{"title":"SemiGNN.py <span style='color:#111;'> 7.21KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"SemiGNN_main.py <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"FdGars","children":[{"title":"FdGars_main.py <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"FdGars.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 731B </span>","children":null,"spread":false}],"spread":true},{"title":"GAS","children":[{"title":"GAS.py <span style='color:#111;'> 7.99KB </span>","children":null,"spread":false},{"title":"GAS_main.py <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 828B </span>","children":null,"spread":false}],"spread":true},{"title":"base_algorithm.py <span style='color:#111;'> 722B </span>","children":null,"spread":false}],"spread":true},{"title":"base_models","children":[{"title":"inits.py <span style='color:#111;'> 826B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 21.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"reference","children":[{"title":"fdgars.txt <span style='color:#111;'> 325B </span>","children":null,"spread":false},{"title":"player2vec.txt <span style='color:#111;'> 389B </span>","children":null,"spread":false},{"title":"geniepath.txt <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"semignn.txt <span style='color:#111;'> 405B </span>","children":null,"spread":false},{"title":"gas.txt <span style='color:#111;'> 317B </span>","children":null,"spread":false},{"title":"gem.txt <span style='color:#111;'> 364B </span>","children":null,"spread":false}],"spread":true},{"title":"main.py <span style='color:#111;'> 10.22KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"DBLP4057_GAT_with_idx_tra200_val_800.zip <span style='color:#111;'> 8.34MB </span>","children":null,"spread":false}],"spread":true},{"title":".travis.yml <span style='color:#111;'> 151B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.80KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 101B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明