上传者: 38744270
|
上传时间: 2021-04-25 08:07:38
|
文件大小: 1007KB
|
文件类型: PDF
针对运动想象脑电信号特征提取困难,分类正确率低的问题,提出了利用小波熵进行特征提取并采用支持向量机(SVM)来分类的算法。计算运动想象脑电信号的功率,通过理论分析选择小波包尺度,对信号功率进行小波包分解并计算其小波包熵(WPE),提取C3、C4导联的小波包熵插值组成特征向量,将特征向量作为分类器的输入送入支持向量机进行分类。采用国际BCI竞赛2003中的Graz数据进行验证,算法的最高分类正确率达97.56%。算法特征向量维数低、数据量小、分类正确率高,对运动想象脑电信号特征提取及分类的任务可以提供参考方法。