deep-learning-from-scratch, 『ゼロから作る Deep Learning』のリポジトリ.zip

上传者: 38744207 | 上传时间: 2022-05-02 22:30:39 | 文件大小: 4.44MB | 文件类型: ZIP
deep-learning-from-scratch, 『ゼロから作る Deep Learning』のリポジトリ

文件下载

资源详情

[{"title":"( 67 个子文件 4.44MB ) deep-learning-from-scratch, 『ゼロから作る Deep Learning』のリポジトリ.zip","children":[{"title":"deep-learning-from-scratch-master","children":[{"title":".gitignore <span style='color:#111;'> 47B </span>","children":null,"spread":false},{"title":"ch08","children":[{"title":"half_float_network.py <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"awesome_net.py <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"deep_convnet_params.pkl <span style='color:#111;'> 966.16KB </span>","children":null,"spread":false},{"title":"train_deepnet.py <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":"deep_convnet.py <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"misclassified_mnist.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"dataset","children":[{"title":"lena_gray.png <span style='color:#111;'> 41.59KB </span>","children":null,"spread":false},{"title":"mnist.py <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"lena.png <span style='color:#111;'> 115.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch01","children":[{"title":"sin_graph.py <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"hungry.py <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"simple_graph.py <span style='color:#111;'> 210B </span>","children":null,"spread":false},{"title":"img_show.py <span style='color:#111;'> 172B </span>","children":null,"spread":false},{"title":"sin_cos_graph.py <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"man.py <span style='color:#111;'> 316B </span>","children":null,"spread":false}],"spread":true},{"title":"ch07","children":[{"title":"apply_filter.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"visualize_filter.py <span style='color:#111;'> 801B </span>","children":null,"spread":false},{"title":"train_convnet.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"gradient_check.py <span style='color:#111;'> 544B </span>","children":null,"spread":false},{"title":"params.pkl <span style='color:#111;'> 3.31MB </span>","children":null,"spread":false},{"title":"simple_convnet.py <span style='color:#111;'> 5.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch06","children":[{"title":"batch_norm_test.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"batch_norm_gradient_check.py <span style='color:#111;'> 812B </span>","children":null,"spread":false},{"title":"hyperparameter_optimization.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"weight_init_activation_histogram.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"optimizer_compare_naive.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"overfit_dropout.py <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"overfit_weight_decay.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"weight_init_compare.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"optimizer_compare_mnist.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch04","children":[{"title":"two_layer_net.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"gradient_method.py <span style='color:#111;'> 755B </span>","children":null,"spread":false},{"title":"train_neuralnet.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"gradient_2d.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"gradient_simplenet.py <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"gradient_1d.py <span style='color:#111;'> 497B </span>","children":null,"spread":false}],"spread":true},{"title":"ch02","children":[{"title":"and_gate.py <span style='color:#111;'> 357B </span>","children":null,"spread":false},{"title":"nand_gate.py <span style='color:#111;'> 360B </span>","children":null,"spread":false},{"title":"xor_gate.py <span style='color:#111;'> 331B </span>","children":null,"spread":false},{"title":"or_gate.py <span style='color:#111;'> 354B </span>","children":null,"spread":false}],"spread":true},{"title":"common","children":[{"title":"optimizer.py <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"functions.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"multi_layer_net.py <span style='color:#111;'> 5.65KB </span>","children":null,"spread":false},{"title":"multi_layer_net_extend.py <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false},{"title":"gradient.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 7.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE.md <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"ch03","children":[{"title":"neuralnet_mnist.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"mnist_show.py <span style='color:#111;'> 578B </span>","children":null,"spread":false},{"title":"relu.py <span style='color:#111;'> 198B </span>","children":null,"spread":false},{"title":"sig_step_compare.py <span style='color:#111;'> 367B </span>","children":null,"spread":false},{"title":"neuralnet_mnist_batch.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"sigmoid.py <span style='color:#111;'> 212B </span>","children":null,"spread":false},{"title":"step_function.py <span style='color:#111;'> 273B </span>","children":null,"spread":false},{"title":"sample_weight.pkl <span style='color:#111;'> 177.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch05","children":[{"title":"two_layer_net.py <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"buy_apple_orange.py <span style='color:#111;'> 988B </span>","children":null,"spread":false},{"title":"train_neuralnet.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"gradient_check.py <span style='color:#111;'> 716B </span>","children":null,"spread":false},{"title":"layer_naive.py <span style='color:#111;'> 557B </span>","children":null,"spread":false},{"title":"buy_apple.py <span style='color:#111;'> 500B </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

  • Self131 :
    我了个去,上传的代码,在这里骗分还是干嘛?就你知道源码地址吗? https://github.com/oreilly-japan/deep-learning-from-scratch
    2019-11-07

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明