Python数据挖掘与机器学习技术入门实战PPT及代码.zip

上传者: 38743602 | 上传时间: 2023-04-05 20:14:45 | 文件大小: 1.56MB | 文件类型: ZIP
数据挖掘与机器学习技术简介 Python数据预处理实战 常见分类算法介绍 对鸢尾花进行分类案例实战 分类算法的选择思路与技巧

文件下载

资源详情

[{"title":"( 27 个子文件 1.56MB ) Python数据挖掘与机器学习技术入门实战PPT及代码.zip","children":[{"title":"3Python数据挖掘与机器学习技术入门实战.ppt <span style='color:#111;'> 751.00KB </span>","children":null,"spread":false},{"title":"第3次直播代码","children":[{"title":"1数据预处理","children":[{"title":"ciyun-ljm.py <span style='color:#111;'> 719B </span>","children":null,"spread":false},{"title":"数据","children":[{"title":"cat.png <span style='color:#111;'> 171.23KB </span>","children":null,"spread":false},{"title":"老九门.txt <span style='color:#111;'> 129.39KB </span>","children":null,"spread":false},{"title":"taob.sql <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false}],"spread":true},{"title":"数据预处理.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"2分类","children":[{"title":"adaboost(扩展,不要求必须掌握).py <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"逻辑回归.py <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"knn-集成.py <span style='color:#111;'> 120B </span>","children":null,"spread":false},{"title":"朴素贝叶斯算法.docx <span style='color:#111;'> 12.34KB </span>","children":null,"spread":false},{"title":"鸢尾花分类问题案例.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 693B </span>","children":null,"spread":false},{"title":"逻辑回归.ppt <span style='color:#111;'> 74.00KB </span>","children":null,"spread":false},{"title":"贝叶斯算法.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"数据","children":[{"title":"lesson.csv <span style='color:#111;'> 591B </span>","children":null,"spread":false},{"title":"cat.png <span style='color:#111;'> 171.23KB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"老九门.txt <span style='color:#111;'> 129.39KB </span>","children":null,"spread":false},{"title":"luqu.csv <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"决策树.doc <span style='color:#111;'> 17.50KB </span>","children":null,"spread":false},{"title":"决策树.py <span style='color:#111;'> 982B </span>","children":null,"spread":false},{"title":"贝叶斯-集成.py <span style='color:#111;'> 127B </span>","children":null,"spread":false},{"title":"adaboost.ppt <span style='color:#111;'> 264.00KB </span>","children":null,"spread":false},{"title":"knn.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"tree.dot <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"thissvm.py <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"svm算法.py <span style='color:#111;'> 139B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明