基于多尺度卷积神经网络的单幅图像去雾方法

上传者: 38740827 | 上传时间: 2021-11-28 10:50:45 | 文件大小: 12.8MB | 文件类型: -
针对传统的单幅图像去雾算法容易受到雾图先验知识制约及颜色失真等问题,提出了一种基于深度学习的多尺度卷积神经网络(CNN)单幅图像去雾方法,即通过学习雾天图像与大气透射率之间的映射关系实现图像去雾。根据大气散射模型形成雾图机理,设计了一个端到端的多尺度全CNN模型,通过卷积层运算提取有雾图像的浅层特征,利用多尺度卷积核并行提取得到有雾图像的深层特征,然后将浅层特征和深层特征进行跳跃连接融合,最后通过非线性回归得到雾图对应的透射率图特征,并根据大气散射模型恢复出无雾图像。采用雾图数据集对该模型进行训练测试。实验结果表明,所提方法在合成有雾图像和真实自然雾天图像的实验中均能取得良好的去雾效果,在主观评价和客观评价上均优于其他对比算法。

文件下载

评论信息

  • Asukaxi :
    好家伙哥们下载完发现是自己学校的
    2021-03-17

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明