几种常用文本分类算法性能比较与分析 (2007年)

上传者: 38737366 | 上传时间: 2022-11-11 09:20:13 | 文件大小: 189KB | 文件类型: PDF
分析了几种典型的文本分类算法的特点,并基于中文文本数据集和英文文本数据集对算法性能进行了综合评价.实验结果表明:对于英文文本数据,支持向量机具有最优的性能,但时间开销最大,贝叶斯算法速度较快;对于中文文本数据,由于分词的困难,使得算法性能普遍低于同等规模下在英文数据集上的性能.几种算法性能均随训练集规模的增大而有改善。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明