用Q-learning算法实现自动走迷宫机器人的方法示例

上传者: 38734008 | 上传时间: 2022-01-02 17:25:36 | 文件大小: 473KB | 文件类型: -
ar IN le
项目描述: 在该项目中,你将使用强化学习算法,实现一个自动走迷宫机器人。 如上图所示,智能机器人显示在右上角。在我们的迷宫中,有陷阱(红色×××)及终点(蓝色的目标点)两种情景。机器人要尽量避开陷阱、尽快到达目的地。 小车可执行的动作包括:向上走 u、向右走 r、向下走 d、向左走l。 执行不同的动作后,根据不同的情况会获得不同的奖励,具体而言,有以下几种情况。 撞到墙壁:-10 走到终点:50 走到陷阱:-30 其余情况:-0.1 我们需要通过修改 robot.py 中的代码,来实现一个 Q Learning 机器人,实现上述的目标。 Section 1 算法理解 1.1

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明