比较 LSTM 和 ARIMA 模型对具有永久波动的时间序列的预测精度-研究论文

上传者: 38729022 | 上传时间: 2021-12-19 11:26:32 | 文件大小: 547KB | 文件类型: -
在经济体系不稳定的发展中国家,历史数据的永久性波动一直是一个令人担忧的问题。 识别变量的依赖性和独立性是模糊的,建立可靠的预测模型比其他国家更复杂。 尽管非线性多元经济时间序列的线性化来预测可能会给出结果,但应忽略显示经济系统中不规则性的数据的性质。 人工神经网络(ANN)的新方法有助于建立一个保持数据属性的预测模型。 在本文中,我们使用德黑兰证券交易所 (TSE) 10 年的日内数据来预测未来 2 个月。 与自回归积分移动平均 (ARIMA) 模型相比,来自 ANN 的长短期记忆 (LSTM) 选择和输出。 结果表明,虽然在长期预测中,两种模型的预测精度都有所降低,但 LSTM 在精度误差方面明显优于 ARIMA。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明